
CSC/TM-87/6728 

EXPERT SYSTEM METHODOLOGY 
STUDY REPORT 

Prepared for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Goddard Space Flight Center 

Greenbelt, Maryland 

COMPUTER SCIENCES CORPORATION 
4600 Powder Mill Road . 
Beltsville, Maryland 

Under 

CONTRACT NAS 5-27888 
Task Assignment 357 

December 1987 

Prepared by: 

A 

Approved by: 

G. MaUKy Date 
Technical Supervisor 

L. Botten Date 
Functional Area Manager 



ACKNOWLEDGMENTS --.---- 

The authors wou1.d like t o  take this opportunity to express 
their gratitude to those who allowed us t o  interrupt cheir 
work schedules to be interviewed for this study: LeRoy 

Botten, Jon Buser, Joy Bush, Bikas Das, Tom Davis, Lew 

Gilstcap, Robert Jackson, Craig Knoblock, Kelly Lindenmayer, 
Ed Medeiros, Glenn Miller, Keith Richardson, Andrea Weiss, 
and R i l l  Wooddrd. They made a valuable contribution to the 
study. 

ii 
906 



ABSTRACT ----- 

This Expert System Development Methodology Study Report 
documents the results of a study of approaches used t o  

develop expert systems. The research methods included a 
review of relevant literature; interviews of individuals 
active j.n expert system development; and participation in 
conferences and seminars related to artificial intelligence, 
expert systems, arid software developinent. The study was 
completed on November 15, 1987. 

Specific expert: system development methodologies are 
reviewed a s  well as the traditional "waterfall" method with 
regard to their applicability to the NASA/Goddard Space 

~ Flight Center envirpnment. The report includes requirements 
for an expert system development methodology. Synopses of 
the literature reviewed are included in an appendix. 

iii 
9 0 6  



-- TABLE OF CONTENTS 

Section 1 - Introduction . . . . . . . . . . . . . . .  1-1 _._-I---_--II_--- 

. . . . . . . . . . . . . .  1..1 Purpose of the Study. 1-1 
1.2 Background. . . . . . . . . . . . . . . . . . . .  1-2 
1.3 Terminology . . . . . . . . . . . . . . . . . . .  1-3 
1.4 Organization o.f the Report. . . . . . . . . . . .  1-5 

__.-------_- Secti.on 2 - Exsert - System DevelopmeLt Methodology 
--- Research A P P K ~ ~ c ~ .  . . . . . . . . . . . .  2-1 

2.1 Literature Search . . . . . . . . . . . . . . . .  2-2 

2.1.1 Selection Criteria . . . . . . . . . . .  2-2 
2.1.2 Literature Data Base . . . . . . . . . .  2-4 

2.2 Interviews. . . . . . . . . . . . . . . . . . . .  2-5 

2.2.1 Selection Criteria . . . . . . . . . . .  2-6 
2.2.2 Sources of Interviewees. . . . . . . . .  2-6 
2.2.3 Interviewing Techniques. . . . . . . . . .  2-8  

2.3 Conference Participation. . . . . . . . . . . . . .  2-9 

Section 3 - Analysis . . . . . . . . . . . . . . . . .  3-1 ------ 
3.1 Existing Approaches to Expert System 

Development . . . . . . . . . . . . . . . . . .  3- 1 

3.1.1 A Standard Approach to Expert System 
Development. . . . . . . . . . . . . . .  3-2 

3.1.2 A Structured Approach to Expert 

3.1.3 Bui.lding An Operational Expert System. . 3-6 
3.1.4 A Comprehensive Expert System 

System Development . . . . . . . . . .  3-5 

Development Methodology. . . . . . . .  3-10 
3.1.5 The KBS Life Cycle . . . . . . . . . . .  3-13 
3.1.6 The Waterfall Model. . . . . . . . . . .  3-16 

3.1.6.1 Description of Waterfall 

3.1.6.2 General Limitations of 
Model. . . . . . . . . . . .  3-1.8 

the Waterfall Model. . . . .  3-20 

3.2 Comparison of Waterfall and Expert System 
. . . . . . . . . . . . . . . . . .  Approaches. 3-24 

3.2.1 Requirements Analysis Phase. . . . . . .  3-26 . . . . . . . . . . . . . .  3.2.2 Design Phase 3-29 

906 iv 



--I- TABLE OF CONTENTS (Cont'dl 

3.2.3 Implementation Phase . . . . . . . . . .  3-31 

3.2.5 Operations arid Maintenance Phase . . . .  3-37 
3.2.6 Management Controls. . . . . . . . . . .  3-39 

3.2.4 Test Phase . . . . . . . . . . . . . . .  3-33 

. . . . . . . . . . . . . . . .  3.3 Interview Results 3-40 . . . . . . . . . . . . . . . . . . . . .  3.4 Summary 3-43 

-_-__------ Section 4 - Requj.rements of an Expert System 
Development Methodolow. . . . . . . . . .  4-1 

-- Section 5 . Summary and Future Goa& . . . . . . . . .  5-1 

Appendix A - Bibliography and Synopses 

Appendix B - Reference Evaluation 

Appendix C - List of Interviewees 

Appendix D - Interview Questions 

-- Glossary 

--- References 

906 V 



F i q u  r e 

3-1 

Table -- 

3-1 

3-2 

3-3 

-- LIST OF ILLUSTRATIONS 

The Software Life Cycle . . . . . . . . . . .  3-21 

- LIST OF TABLES 

Comparison of Three Approaches t o  Expert 

Comparison of Four Approaches to Expert 

Comparison of Traditional and Expect 

System Development. . . . . . . . . . . . .  3-7 

System Development. . . . . . . . . . . . .  3-12 

System Software Life Cycles . . . . . . . .  3-25 

9 0 6  vi 



-- SECTION 1 - INTRODUCTION 

This section describes the purpose and scope of the study 
and provides some necessary background information to ensure 
that all readers approach the study and its results from a 
common reference point. The background information explains 
the impetus for the expert system development methodology 
study. This is followed by definitions of common 
terminology as applied to expert system development in this 
report. This section concludes with a description of the 
organization of the report. 

1.1 PURPOSE OF THE STUDY 

The purpose of the expert system development methodology 
study is to identify and evaluate existing OK proposed 
methods used in the development of expert systems. In 
particular, the study assesses approaches t o  knowledge 
acquisition, knowledge representation, implementation, 
verification, delivery, maintenance, enhancement, quality 
assurance, and configuration control of an expert system 
from a technical perspective. The study also reviews 
existing approaches to expert system management. Tn 
assessing existing methodologies and in defining the  

necessary elements of an expert system methodology, task 

methodology is essential to developing an operable and 
maintainable system. Second, a good methodology is an aid 
to developers. To be good, a methodology, whatever its 
details, must allow developers to produce quality software . 
products and must not constrain them in their creativity or 
innovation. Finally, a good methodology is an aid to 
management, providing guidance in planning a project and 
establishing mechanisms for monitoring and controlling it. 

' members worked from the following premises. First, a 

1- 1 

906 



1.2 BACKGROUND 

CSC and NASA have many years of experience working together 
on software development. Their successful, long-term 
relationship has led to a mutually understood and agreed 
upon approach to software development. This approach 
includes the management aspects of planning, monitoring, and 
controlling the development process, as well as the 
technical aspects involved in the actual development of 
software systems. 

Soon after starting an assignment to develop the prototype 
expert system Platform Management System (PMS) Resource 
Envelope Scheduling System (PRESS), CSC realized that the 
traditional management and technical approaches to software 
development could not meet the needs of expert system 
development. CSC also recognized that the documented expert 
system development approaches as represented in the 
literature and agreed to by both developers and customers, 
while seemingly appropriate, could not be readily applied in 
a real-world setting. 

From the experience gained in developing PRESS and through 
conversations with other expert system developers, both 
government and contractors alike, CSC identified a number of 
problems that pervade expert system development, including 

0 Difficulty in scheduling and planning to allow for 
radical changes to the system 

0 Difficulty in communicating between/among experts 
and knowledge engineers 

0 Difficulty in modularizing a production rule base 

0 Difficulty in quantifying and measuring progress 
and status 

0 Difficulty in devising a mechanism for validating 
and verifyins the product 

1-2 

906 



0 Lack of guidance in the role of and mechanisms for 
quality assurance and configuration management of 
expert systems 

The current task, therefore, grew out of the realization 
that a comprehensive methodology that covers all aspects of 
expert system development is needed. 

1.3 TERMINOLOGY 

A pervasive problem in the field of expert system 
development, and one encountered in this study, is lack of 
agreement on terminology. An expert system means something 
different to nearly everyone. For the purpose of this 
study, an expert system is defined as "a computer system 
designed to simulate the problem-solving behavior of a human 
who is expert in a narrow domain" [ll]. This definition 
from Denning is precise enough to convey the philosophy of 
expert system technology yet broad enough to allow different 
approaches to expert system development. This definition 
provided a common starting point for discussions among task 
members, with interviewees, and in assessing literature. It 
also provides a similar degree of commonality for readers of 
this report. 

Similarly task members used a common definition for 
prototyping. Prototyping, an important element of expert 
system development, has a number of connotations which 
depend on the background of the interpreter. In this study, 
a prototype is an early working model of a proposed system 
that does not exhibit all the system's features. For an 
expert system, a series of prototypes is used to establish 
requirements (i-e., system behavior) as well as to 
demonstrate proof of concept. Unlike a hardware prototype, 
an expert system prototype may o r  may not be discarded. If 
the prototype is a successful proof of concept, the design 

1-3 

906 



concept is retained for the next iteration. If the 
prototype fails to satisfy the users and developers, it may 
be discarded or substantially revised. In essence, the 
requirements and the design of the expert system evolve 
through the prototyping process. The final prototype 
defines the requirements of the functional expert system: 
these requirements are then implemented to meet performance 
and other operational requirements. The expert system, 
therefore, is derived from the knowledge and experience 
gained from the prototypes and not from forcing each 
prototype to fit within artificial constraints dictated by 
its predecessor. The prototyping process also leads t o  a 
more robust expert system because poor  designs have been 
eliminated and missing requirements added. 

A broad definition of tool is used in this study. Tools 
consist of hardware and software packages used to assist 
exper't system development. These include languages, shells, 
knowledge acquisition programs, and hardware devices that 
host artificial-intelligence software packages. 
Requirements is used to represent the elements that must be 
present in the system and that act in harmony with each 
other to satisfy the customer's needs. For an expert 
system, this may include a subset of the expert's 
knowledge. The expert's knowledge is the p o o l  of 
information and the physical and mental skills possessed by 
the expert that allows that person to be recognized as an 
expert in that area. 

Finally, a general definition of a methodology is considered 
necessary. A methodology is the framework that encompasses 
specific techniques and guidelines for defining and 
accomplishing work from the beginning through the end of the 
project. It also provides guidance in planning and 
organizing to meet the requirements of the task, and it 

1- 4 

906 



identifies the controls that must be implemented to monitor 
and assess the quality of the product and the progress 
toward completi,on. Perhaps most importantly, a methodology 
provides a common frame of reference for all engineers, 
developers, and managers, and for the customer. 

1.4 'ORGANIZATION OF THE REPORT 

The remainder of the report documents the results of this 
study. It is divided into four main areas. Section 2 
describes the types of research comprising the study. 
Section 3 analyzes the information learned during this 
research. Section 4 presents recommendations as to the 
essential elements that must be included in any methodology 
proposed for expert system development. Finally, Section 5 
contains a brief summary of the conclusions and suggestions 
for the future. 

1- 5 
9 0 6  



SECTION 2 - EXPERT SYSTEM DEVELOPMENT METHODOLOGY RESEARCH 
APPROACH 

The goal of this study is to identify and evaluate existing 
or proposed methods used to develop expert systems. The 
initial assumption was that the study would consist 
primarily of a literature search to provide suitable 
descriptions of various methods and the subsequent 
evaluation and critique of the methods. This initial 
assumption was proven invalid. Because expert systems 
represent a relatively new field in computer science, few 
systems have completed their life cycle. Accordingly, 
documented experiences with the full range of an expert 
system development are necessarily limited. 

The literature search proved that essentially no documented, 
comprehensive, formal methodology, as defined in Section 1, 

true for a formalism describing the development of an expert 
system from its inception through operations and 
maintenance. (However, CSC expects this situation to change 
within the next year. Interest in a formal methodology is 
high, as evidenced by discussions at conferences and by 
s e v e r a l  v e r y  r e c e n t  papers t h a t  d i s c u s s  t h e  need for a 

formal methodology.) 

. exists for developing expert systems. This is especially 

This finding indicated that the direction of the KeSeaKCh 
needed to shift. To determine whether an undocumented 
methodology existed, interviews were added a s  a research 
method. The interviews essentially confirmed the results of 
the literature search. As one interviewee phrased it, 
**management is a little loose.” Furthermore, the 
interviewees discussed expert systems in general terms, 
admitting that their personnel followed no formal procedures 
and that management controls were noticeably lacking. 

2-1 

906 



Conferences were also added to the task agenda. The 
conferences proved beneficial in that they exposed task 
members to the most recent advances in the field of expert 
system development. Hence, what began as a literature 
search evolved into a broader three-tiered research project, 
which painted a comprehensive picture of the state of expert 
system development and confirmed the need for a full-scale 
methodology. 

This three-tiered approach balanced a carefully selected 
literature review with interviews of expert system 
practitioners and with attendance at conferences and 
seminars to determine the latest in expert system 
development methodology. This section describes the three 
approaches--literature search, interviews, and conferences 
at tended. 

2.1 LITERATURE SEARCH 

The initial research effort focused on the available 
literature. This approach helped familiarize task membecs 
with current ideas and development methods, and provided a 
pool of names for subsequent interviews. Appendix A 
presents a bibliography of the literature expanded to 
include a synopsis of each item read. Appendix A is 
arranged alphabetically by author to facilitate general 
use. References are also provided at the end of this report 
and are arranged numerically by a task-assigned literature 
identifier that is used to reference the documents in this 
report. 

2.1.1 SELECTION CRITERIA 

The time lapse between writing and publishing can vary from 
a few months for a journal article to 1 to 2 years for a 
full-length book. As a result, the publishing process 

906 

2 - 2  



cannot keep pace with the influx of new ideas in an emerging 
field such as expert system development. Ideas that are new 
or current when documented may be obsolete by the time they 
reach the public. Accordingly, CSC restricted the 
literature search to those items published after 1984 and 
emphasized periodicals, conference proceedings, and 
technical reports to ensure a certain degree of currency. 

Those books that were included were limited to those by 
authors widely recognized by the expert system community, 
such as Waterman and Hayes-Roth, or to those that seemed 
wholly relevant to the task. Those works were used 
primarily to develop the task's general theoretical 
background. 

The research was greatly aided by a literature search 
conducted by the personnel of the Homer E. Newel1 Memorial 
Library at the Goddard Space Flight Center (GSFC). NASA 
library catalogs are stored on the NASA RECON data base 
developed by Lockheed. The bibliographic search strategy 
incorporates queries by selected keywords and combinations 
of keywords. The keywords used for this task included 
expert system, artificial intelligence, software 
engineering, software tools, computer systems design, and 

program verification. The result of the query was a 62-page 
bibliography with a synopsis of each entry. From this list, 
approximately 2 5  articles and books were selected for closer 
examinat ion. 

In addition, task members searched the Institute of 
Electronics and Electrical Engineers (TEEE) publications 
Expert, Computer, and Transactions of Software Engineering 
for relevant articles, as well as artificial intelligence 
(AI) conference proceedings and other publications. 
Selected articles often included references to additional 

2- 3 

906 



works, thereby further j.ncreasing the literature base. For 
any references published before 1985, the currency 
restrj.ction was ignored if the information was directly 
applicable. One important work uncovered in this way was 
- E-rt Systems 1986 by Walker and Miller [29]. This work 
describes expert systems developed for diverse fields, 
j.ncluding aerospace applications, and lists companies 
working in expert system development. This list proved to 
be a valuable source of potential interviewees. 

2.1.2 LITERATURE DATA BASE 

An early assessment of the volume of literature to be 
researched revealed the need for a data base to facilitate 
the cataloging of the reading material and the assessment of 
its usefulness to the study. The relational data base 
RHASE 5 0 0 0 ,  from MicroKim, was chosen because it is easy to 
use and,understand and has extensive, flexible 
report-generation capabilities. Appendixes A and B and the 
reference list were produced using this data base management 
system. 

The expert system data base contains three tables for each 
book or article reviewed. The tables are linked by an 
identification number (LITID) thereby permitting reports to 
be generated containing data from all tables. The first 
table contains bibliographical information and includes 
fields for keywords and brief comments. To provide a 
contents summary of each book or article, a second table was 
set up. The characteristics of each individual paper read 
for this study were identified and assigned a weighted code, 
ranging from 1 to 5, indicative of the significance of the 
material relative to this study. Each paper was evaluated 
according t o  subject matter, i.e., quality assurance, 
configuration control, scheduling, or development life cycle 
in the technical area; and planning, organizing, monitoring, 

2-4 

906 



and control in the management area. This TOPICS table, 
provided in Appendix B, made.evident the dearth of 
information in t.he area of expert system management. The 
third table consists of an expanded synopsis of the book or 
article. 

2 . 2  INTERVIEWS 

Few of the more than 100 books and articles studied deal 
directly with expert system development methodologies (as 
per the definition of methodology given in Section 1). Most 
present personal experiences with the development of a 
particular expert system or portion thereof (e.g., knowledge 
acquisition only). Given the scarcity of literature on 
full-scale expert system development methodologies, 
interviews with individuals directly involved in expert 
system development became increasingly important and 
necessary. 

The advantages of interviewing include the opportunity to 

0 Acquire the latest ideas and opinions on the 
subject, thereby avoiding the problem of 
"publication lag" 

0 Clarify statements, if needed, thereby avoiding 
misinterpretation, an important point in a field 
where terminology is not defined consistently 

0 Establish a rapport with those who may be useful 
when actually developing a methodology 

0 Acquire additional contacts 

The disadvantages to interviewing are the extensive effort, 
time, and cost associated with interviews. Interviewing 
requires good communication skills: pre- and post-interview 
reviews and analyses: PKeaKKanged appointments; and, often, 
travel that is costly in terms of both time and money. 

2 - 5  

906 



Interviewing resulted in a better understanding of the 
existing approaches and methods (or lack thereof) of expert 
system development. In addition, some interviews will be 
invaluable in the subsequent development of the expert 
system methodology. The interview results justify the 
efforts of the task members. 

2.2.1 SELECTION CRITERIA 

Originally, interview candidates included those with 
management as well as technical experience in expect system 
development, maintenance, and/or use. Preference was given 
to individuals involved in space applications located 
reasonably close to CSC/System Sciences Division (SSD). 
Software methodology experts and institutions well known f o r  
artificial intelligence/expert system research efforts 
(e.g., Carnegie Mellon University) were also included to 
acquire some broad points of view on the subject. 

These sources, however, were not able to provide adequate 
information concerning the later stages of the expert system 
life cycle, especially the management and technical 
approaches to maintenance, quality assurance, and 
configuration control. Additional interviewees were sought 
who were directly involved in a system in operation for at 
least 2 years. CSC selected XCON, an expert system of 
Digital Equipment Corporation (DEC) that configures VAX 
computer systems. Unfortunately, due to the proprietary 
nature of XCON, CSC was unable to arrange an interview with 
DEC personnel despite several attempts. However, references 
1121, 1411, and 1731 provided some informatio-n on the 
maintenance of XCON. 

2 . 2 . 2  SOURCES OF INTERVIEWEES 

CSC uses a well-defined, structured methodology in both 
managerial and technical areas throughout the system life 

2 - 6  

906 



cycle. Because CSC/SSD's expert system development efforts 
are in space.applications, CSC personnel were among the 
first to be interviewed. 

The Joint Artificial Intelligence Discussion (JAID) Confer- 
ence, held for the CSC/AI community in May 1987, served as a 
valuable source of contacts. Task members reviewed a ques- 
tionnaire distributed during the conference to identify 
individuals useful to the task objectives. CSC found that 
the responses on the written questionnaire were often 
ambiguous or incomplete, and occasionally different from 
responses given in later conversations. This experience 
prompted task members to abandon an initial idea of a mail 
survey (asking correspondents to fill out a questionnaire) 
and led to the use of personal and telephone interviews. 

Another source of contacts with persons having artificial 
intelligence/expert system experience in space applications 
was the Second Conference on AI and Robotics, organized by 
GSFC and held in Greenbelt, MD, in May 1987. This 
conference led to contacts with personnel from the Hubble 
Space Telescope Science Institute (ST ScI) in Baltimore, MD, 
who had developed the Entry Processor System, an expert 
system that converts an astronomer-oriented description of a 
scientific observing program into a detailed description of 
the parameters needed for planning and scheduling. 

Walker and Miller E293 list companies active in expert 
system development; this list was searched for those located 
in the Washington, DC, metropolitan area and involved with 
aerospace applications. Difficulties with the proprietary 
nature of commercial systems companies led to early 
abandonment of such contacts, with the exception of DEC. 

Finally, Larry Mull, the task's Assistant Technical Represen- 
tative, identified NASA personnel who lead artificial intel- 
ligence/expert system projects at different NASA centers. 

2-7 

906 



The final list of interviewees is provided as Appendix C. 

2.2.3 INTERVIEWING TECHNIQUES 

Before conducting interviews, task members developed a 
high-level interviewing strategy. Task members decided to 
adopt a conversational form of interviewing, guided by but 
not limited to a base set of questions covering all areas of 
expert system development and maintenance. This set was 
reviewed and revised a number of times to include additional 
thoughts of task members as well as recommendations from 
trial interviewees. The final version of these questions is 
provided as Appendix D. 

Each interview was tape recorded whenever possible to permit 
all task members to hear the actual interview and to 
facilitate analysis. When tape recording was not possible, 
the interviewer took handwritten notes. Each interview was 
carefully analyzed and conclusions drawn. In some cases, 
interviewees were recontacted, usually by telephone, to 
clarify points or to provide additional information. 

The interviewing component of the research gathered 
information in those areas not adequately covered in the 
literature. In selecting candidates, CSC screened potential 
contacts by telephone. During screening, the interviewer 
briefly explained the purpose of the task and of the 
interview, and asked general questions to confirm the 
contact's ability to provide information useful to the task. 

In the absence of well-defined and uniformly understood 
terminology in the expert system field, such a 
"preinterview" became especially important to prevent 
unnecessary traveling. Often, candidates who were not 
appropriate themselves identified others who were. 

At the end of a successful preinterview, task members and 
the interviewees arranged a convenient time for a full 

2-8  

906 



interview. At the start of each interview, the interviewer 
always asked permission to quote the interviewee. An 
attempt was always made to create an atmosphere of trust and 
confidentiality during the interview. After each interview, 
while impressions were still fresh (and especially after 
telephone interviews or when no tape recordings were made), 
the interviewer briefed other task members on the 
information acquired. 

2.3 CONFERENCE PARTICIPATION 

Task personnel attended various AI conferences and seminars, 
as well as a number of presentations held at NASA and CSC. 
This gave task members the opportunity not only to meet 
personnel who develop artificial intelligence/expert systems 
but also to acquire conference proceedings and other current 
written material. Conferences also proved to be a valuable 
mechanism for establishing contacts and obtaining names of 
individuals involved in related work. 

The main criteria for conference selection were based on the 
following keywords: expert system, methodology, or space 
application. Some AI conferences sounded promising (as 
judged by their titles) until a review of their program 
showed them to be unrelated to the task's goals. For 
example, a methodology conference may have addressed a 
mathematical methodology in an expert system application but 
not a software engineering methodology for the building of 
the expert system. This again underscored the confusion 
over terminology in the field. 

The following conferences/seminars were attended by task 
members. 

The Software Rapid Prototyping seminar held in August 1987, 
in Washington, DC, addressed the conventional software 
development methodology, including the failure of the 
currently used waterfall method to accurately reflec: some 

2-9 

9 0 6  



features of the actual development process. This conference 
proposed an iterative approach (via a series of rapid 
prototypes). If valid, it narrows the gap between 
conventional software and expert systems development. See 
Section 3 for the detailed discussion of this subject. 

The Third Annual Expert Systems in Government Conference, 
held in Washington, DC, in October 1987, was extremely 
useful in that two tutorials of immediate applicability were 
presented. Nancy Martin, an expert in expert system 
development methodology presented the tutorial "The 
Management of Expert System Development" and Barry Zack 
presented "Building Operational Expert Systems." The 
details of these are discussed in Section 3 .  

The Third Conference on Artificial Intelligence for Space 
Applications, held in Huntsville, AL, in November 1987, was 
useful in that topics directly relevant to the task were 
discussed. Furthermore, task members met K. Richardson who 
is a member of the Systems Autonomy Demonstration Project at 
NASA/Ames Research Center. His paper discussed an expert 
system life cycle developed by the group at NASA/Ames. Task 
members informally interviewed Mr. Richardson. The Ames 
life cycle is a l s o  discussed in Section 3 .  

Task members attended CSC and GSFC presentations on 
prototype expert systems. Troy Ames of GSFC discussed the 
knowledge-based system developed to support the data 
accounting and quality assurance functions of the Spacelab 
Output Processing System. CSC personnel demonstrated the 
final prototype of PRESS that was developed as part of a 
research effort. PRESS assists users in creating a 
constraint- and conflict-free schedule of activities. Both 
presentations addressed issues of current expert system 
development efforts that touched on the needs of an expert 
system development methodology. 

2-10 

906 



SECTION 3 - ANALYSIS 

This section describes the results of the study based on the 
literature search, interviews with experts, and conference 
attendance. Section 3.1 describes existing approaches to 
the development of expert systems uncovered during the 
study, while Section 3.2 compares the traditional software 
development methodology with those used to develop expert 
systems. Section 3.3 summarizes the results of the 
interviews, and Section 3.4 summarizes the results of the 
analysis. In this section, the term methodology is used 
often in the context of the references. It must be 
emphasized that this usage does not always correspond to 
that defined in Section 1.3. In the majority of the cases, 
the approaches to expert system development, called 
methodology in the references, represent a part of the 
methodology as defined in Section 1.3. 

3.1 EXISTING APPROACHES TO EXPERT SYSTEM DEVELOPMENT 

This section discusses the literature'and conferences that 
address what is commonly thought of as a "methodology." The 
synopses of the papers and books read for this study 
(Appendix A) show that most literature addresses either a 
specific aspect of expert system development (e.g., 
requirements specification or verification and validation) 
or a tool or language applicable to the author's problem. 
From the literature, the following papers were identified as 
being the most comprehensive--Buchanan et al. 131, Waterman 
[l], Bobrow, Mittal, and Stefik [40], and Keller [5]. From 
the conferences, the seminar on software rapid prototyping 
[ S O ] ,  the tutorials by Zack I841 and Martin [85], and the 
work reported by Richardson and Wong 11031 were the most 
comprehensive. 

9 0 6  

3-1 



The literature may be divided into two categories. The 
standard expert system development approach is represented 
in the papers of Buchanan et al. [3], Waterman [l], and 
Bobrow, Mittal, and Stefik [40]. These are discussed 
jointly in Section 3.1.1. A structured approach taken by 
Keller and based on DeMarco [Sl] is discussed separately in 
Section 3.1.2. 

The approaches of Zack, Martin, and Richardson and Wong were 
presented at conferences: these are discussed in Sections 
3.1.3, 3.1.4, and 3.1.5, respectively. Finally, although 
not an expert system methodology per se, the conventional 
software development methodology, the waterfall method, has 
been included as Section 3.1.6 because it seems to be moving 
in a direction that may accommodate expert system 
development. The rapid prototyping seminar is discussed 
in the context of the waterfall method. 

3.1.1 A STANDARD APPROACH TO EXPERT SYSTEM DEVELOPMENT 

Buchanan et al. [3]; Waterman [l]; and Bobrow, Mittal, and 
Stefik 1401 define stages or phases in the development of an 
expert system that are essentially the same, thereby 
permitting them to be discussed together. 

Buchanan et al. [ 3 ]  list identification, conceptualization, 
formalization, implementation, and testing as stages of 
knowledge acquisition. Waterman [l] uses this same 
terminology to describe the different development phases for 
building an expert system. Regardless of whether these 
terms refer to stages of knowledge acquisition or phases of 
development, they address the same activities. These 
activities are summarized by phase in the following 
description. Note that management issues are not discussed 
by Buchanan et al. or by Waterman. 

3-2 

906 



Identification Phase--Identification begins the expert 
system development process. The knowledge engineer and the 
expert identify the problem, the necessary resources, and 
the goals of the expert system. 

Conceptualization Phase--During conceptualization, the 
knowledge engineer and the expert meet frequently to more 
accurately define the key concepts and relations, and rhe 
control mechanisms. The knowledge engineer records these 
concepts and relations to make the conceptual basis for 
problem formalization permanent. 

Formalization Phase--Formalization involves the expression 
of the concepts and relations defined in the previous phase 
by means of an expert system building language. The 
knowledge engineer needs to understand the nature and 
structure of the knowledge to be captured by the system, and 
must decide what expert system tool is best suited for the 
immediate application. 

Implementation Phase--During implementation, the formalized 
knowledge is turned into a working program by the 
programmers. This is usually done in a protoLype 
environment whereby various approaches are tried until the 
prototype expert system appears to perform in the same 
manner as the expert. 

Testinq Phase--The prototype is tested for its usefulness 
and performance. Each expert system requirement is verified 
and validated by a series of tests. This demonstrates that 
the knowledge representation is correct and that the 
inference engine reproduces the decision of the expert. 

Testing may reveal that the system needs to be reformulated, 
redesigned, or refined. Reformulation entails changes i.n 
the identification and/or conceptualization phase, which in 

3 - 3  

906 



turn affect the remaining phases. Redesign occurs in the 
formalization phase by changing the representation of the 
knowledge. Failure to meet performance requirements may 
also force a redesign. Refinement occurs via iterations 
throughout implementation and testing when relatively mi.nor 
changes occur. 

Iteration is a key element throughout the development 
process, especially for implementation and testing. 

Iteration as a key factor in expert system development was 
supported consistently throughout the interviews. Waterman 
[l] emphasizes that for an expert system methodology to 
accurately represent expert system development needs, each 
phase must be able to interact with any other phase. 

Partridge , 1 5 3 3  characterizes AI program development as a 
run-understand-debug-edit cycle (RUDE cycle). Analysis of 
the process, especially in the context of the methodologies 
presented above, supports Partridge in his characterization 
of expert system development. Partridge warns that in its 
worst manifestation, the RUDE cycle is "hacking" whereas 
incremental analysis and redesign represent its better 
i ncar na t.ion . 
Bobrow, Mittal, and Stefik [ S O ]  list a similar 
cycle--identification, conceptualization, prototyping, 
creating user interfaces, testing and redefinition, and 
knowledge-based maintenance--as the stages of expert system 
development. The goals of their identification phase are 
the same as those already mentioned. The conceptualization 
stage encompasses both the conceptualization and 
formalization phases of Waterman and Buchanan et al.; 
prototyping is identical to implementation. Even though 
creating user interfaces is identified by Bobrow, .Mittal, 
and Stefik as a distinct stage, the functions and activities 

3 - 4  

906 



identified for this stage are essentially identical to those 
occurring in the implementation phase cited by Waterman and 
Buchanan et al. The activities of the testing and 
redefinition stage are likewise identical to those of 
Waterman and Buchanan et al. Only the knowledge-based 
maintenance stage is explicitly different from Waterman and 
Buchanan et al. Bobrow, Mittal, and Stefik state that 
during this phase a plan that provides for the testing, 
development, transfer, and maintenance of a large system 
must be made. The prototype has been accepted: it is now 
time to move on to the full-scale project. 

Although Waterman; Buchanan et al.; and Bobrow, Mittal, and 
Stefik detail the activiti.es that occur in the different 
phases of expert system development, their discussions 
remain too general for practical application. They do 
provide excellent overviews of the expert system development 
process: however, more detail is required to successfully 
apply their principles to a problem, as was discovered 
during the development of PRESS (comment by J. Bush and 
A. Critchfield during their interview). - 

3.1.2 A STRUCTURED APPROACH TO EXPERT SYSTEM DEVELOPMENT 

Keller 1 5 3  describes a life cycle f o r  an expert system that 
is based on the structured analysis techniques of Yourdon. 
He associates nine activities with the life cycle--survey, 
structured analysis, knowledge base design, design, systems 
integration, implementation, acceptance test, hardware 
analysis, and knowledge acquisition. Keller's list is 
deliberately nonchronological; several of the activities 
must occur in parallel. For example, knowledge acquisition 
and structured analysis, which Keller views as nearly 
identical, are done at the same time and by the same 
persons. He distinguishes the two by Limiting knowledge 

3-5 

9 0 6  



acquisition to the functional, logical content of the 
expert's domain, and structured analysis to the functional 
components of peripheral activities, such as the user 
interface. Structured analysis also includes the 
specification of the physical OK technological components of 
the expert system. 

Keller spends considerable time discussing early life-cycle 
activities, especially structured analysis. Applying 
structured methods, he provides a detailed example of a 
scheduling system, first by showing how the problem was 
selected and then explaining why the problem is suitable for 
implementation as an expert system. He does not, however, 
exhibit the same degree of thoroughness for the activities 
that follow analysis. Keller does include a discussion of 
the role of prototyping in expert system development but 
limits this to the use of PROLOG for this activity. The 
importance of Keller's book cannot be overlooked for those 
involved with the selection and specification of an expert 
system, although its weakness in the later stages of the 
life cycle is a shortcoming. 

Table 3-1 maps Keller's life cycle into the standard life 

that, although this table reveals an apparent degree of 
commonality among the various approaches, the activities 
within these phases are not necessarily the same. For 
example, the testing stage given by Buchanan et al. and 
Waterman refers to the testing of the original prototype, 
whereas that of Keller is broader and contains integration 
tests. 

cycles discussed in Section 3.1.1. It must be emphasized 

3.1.3 BUILDING AN OPERATIONAL EXPERT SYSTEM 

At the IEEE Expert Systems in Government Conference, Zack 
[84] presented a tutorial on the construction of an expert 

3-6 
906 



Table 3-1. Comparison of Three Approaches to Expert 
System Development 

IDENTIFICATION 

CONCEPTUALIZATION 

IMPLEMENTATION 

TESTING 

BOBROW. MIlTAL. AND STEFIK 

IDENTIFICATION 

CONCEPTUALIZATION 

PROTOTYPING 

CREATING USER INTERFACES 

TESTING AND REDEFINITION 

KNOWLEDGE BASE MAINTENANCE 

KELLER 
~ ~~ ~~ 

SURVEY 

STRUCTURED ANALYSIS 

KNOWLEDGE ACQUISITION 

HARDWARE ANALYSIS 

DESIGN 

KNOWLEDGE ACQUISITION 

KNOWLEDGE BASE DESIGN 

IMPLEMENTATION 

ACCEPTANCE TEST 

SYSTEM INTEGRATION 

9 0 6  3-7 



system. The presentation itself was on the same high level 
as Waterman [l] and Buchanan et al. [ 3 ] ,  but it is useful in 
that it provides an additional perspective on the 
development of an expert system, especially in the 
management area. 

Zack's model for development consists of application 
selection, system development, deployment, and maintenance 
and enhancement. The main functions of application 
selection are to identify a problem and then to determine 
both the value of and the feasibility of solving the problem 
with an expert system. Included in the feasibility issue is 
the commitment of management to implementing an expert 
system. In Zack's view, management not only must be 
committed to the expert system implementation but also must 
be willing to modify some of its organizational biases and 
accept incremental progress toward the problem solution. 

System development begins with knowledge acquisition and 
moves rapidly into prototyping. Zack states that the 
objectives of prototypi'ng can include a demonstration of 
technical feasibility for the entire expert system or a 
portion thereof, a demonstration of functional capabilities, 
and finally a successful prototype that proves the 
development team's ability to capture and utilize 
expertise. The prototype itself should focus on priority 
areas of the knowledge base and areas requiring either a new 
technology or a new problem-solving mechanism. The 
prototype results help define the development of the 
operational expert system. During prototype development, 
management must balance the iterative nature of prototyping 
with the needs to demonstrate progress and to arrive at a 
successfully developed expert system. Each prototype, 
although an incomplete system, must have specific objectives 
against which it is evaluated. 

3-8 

9 0 6  



During system development, the functional specifications of 
the system are derived. Zack emphasized that the functional 
behavior of a knowledge-based system affects the complexiLy 
and the design of the knowledge base, and that the contents 
of the knowledge base cannot be specified in advance of its 
completion. Every expert system also requires an 
explanation facility, i.e., it must be capable of explaining 
its reasoning. 

In the transition from a prototype development environment 
to an operational system development environment, Zack 
states that formal project management is instituted. The 
functional specifications and design are finalized and 
management prepares a detailed project plan. 

Before the system is deployed, it must be tested. Both the 
knowledge base and the overall system require verification 
and validation. The knowledge base's conclusions and 
reasoning processes must be correct and its explanations 
lucid. For the overall system, the performanc.e, usabiliry, 
intelligibility, and acceptability must be evaluated. 

Zack states that several issues must be addressed before 
delivery and deployment of the expert system. The user and 
the development team must agree on whether the deployed 
system will be used as developed or modified in response to 
the operational environment. For example, an expert system 
may be written on a large mainframe but ported to a smaller 
expert system shell. They must also agree on whether the 
delivered system will constitute a rewrite of the 
developed/prototyped system in a conventional Language. 

Zack emphasizes that less distinction exists between 
maintenance and enhancement of an expert system than in a 
conventional software system because a knowledge,base is 
never really complete. Changes in the knowledge base can 

3 - 9  

9 0 6  



occur because of discovered software errors, performance 
tuning, a changing operational environment, specification 
changes, new insight by the experts, generalization or 
simplification of knowledge, and new cases. To 
satisfactorily maintain an expert system, the expert as well 
as the knowledge engineer must continue to be available, and 
documentation must 'be complete and kept current. 

Because of the high-level nature of the discussion, applying 
Zack's concepts directly would be difficult. In addition, 
any project wishing to implement these concepts must 
carefully analyze the timing of specific events. For 
example, a project manager may wish to develop a detailed 
project plan earlier than the time proposed by Zack. In 
addition, decisions about the delivered system (i.e., 
operational environment) should probably be made earlier 
than in Zack's deployment phase. 

3.1.4 A COMPREHENSIVE EXPERT SYSTEM DEVELOPMENT METHODOLOGY 

At the IEEE Expert Systems in Government Conference, Martin 
[ a 5 1  presented the most comprehensive expert system 
methodology reviewed for this study. Her tutorial, "The 
Management of Expert System Development," described the cost 
and schedule drivers of expert system development, the 
composition of the development team, project planning, the 
acceptance criteria for the expert system, and the 
development stages and life cycle of an expert system. 

Martin has developed the Expert System Controlled Iterative 
Enhancement (ESCIE) methodology. ESCIE has seven 
stages--initial feasibility study, rapid prototype 
demonstration, basic system usage, scope development system, 
refinement/enhancement, productization, and 
operations/maintenance. 

3-10 

906 



During the initial feasibility study stage, the feasibility 
and advisability of working on a specific problem is 
analyzed and determined. The rapid prototype demonstration 
stage is used to illustrate the problem-solving capability 
of the expert system and to demonstrate the ability to 
rapidly obtain an executable system. The main purpose 
behind this demonstration stage is to garner the support of 
management, the user, and the expert. This stage can be 
performed in parallel with the next stages to investigate 
different knowledge-base designs or difficult aspects of the 
problem solution. 

The basic system usage stage demonstrates that the expert 
system can perform the required reasoning and be beneficial 
to the users. The scope development system stage 
demonstrates the utility and the performance of the system 
over the scope of the desired functionality, while the 
refinement/enhancement stage is devoted to improving the 
system's performance, usability, capacity, and 
functionality. Ease of maint'enance is emphasized during 
this stage. Within each of these last three stages, i.e., 
basic system usage, scope development system, and 
refine/enhancement, Martin places five phases--requirements 
analysis, specification-model, architectural design, 
design-implement-test, and evaluation. This scheme 
introduces iterativeness to ESCIE. Martin also relates 
these phases to those of Buchanan et al. [ 3 ]  and Wat'erman 
[I] as shown in Table 3-2, which is an expansion of 
Table 3-1. 

The productization stage is used to produce a marketable 
product, whereas the operations/maintenance stage provides 
for operations support, corrective action, and enhancements 
in response to changing environments. 

3-11 

906 



U 
E 

a 2 

s 
a 
d 

Q) ca 
E 
a 
w 
W 
x 
v) 

U 
U 
a a 
X 
iil 

a 
U 

W 
Q) 
E 
u a 
0 
U 
a 
a 
4 
u 
3 a 
CL 

W 
0 

c 
0 
La 
.d 
u 
a a 
E 
0 
U 

(v 
1 

VI 

9, 

n 
a 
& 

d 

z 
Q 

906 3-12 



Martin describes each of her five phases as follows. During 
the requirements analysis phase, the user requirements are 
determined, acceptance criteria established, and the 
feasibility and advisability of proceeding with the project 
are evaluated. This description is identical to traditional 
software requirements analysis. The specification-model 
phase defines the problem solving required of the expect 
system. The architectural design phase determines the major 
components of the expert system, their structure, and their 
interfaces. Work is done not only on the structure of the 
knowledge base, but also on the inference engine itself. 
The goal of the design-implement-test phase is to obtain a 
working version of the system as early as possible so the 
user can validate it as it grows. Additionally, design 
decisions are implemented and evaluated immediately. As the 
design and code progress, the system is verified through 
unit and integration tests. Ultimately, the system is 
evaluated for itsereasoning capabilities. smoothness of 
interfaces, visibility, ease of enhancement, performance, 
reliability, utility, cost-effectiveness, and scope. 

Martin's methodology is an integrated approach, i.e., it 
integrates management and technical issues. ESCIE strives 
to provide the necessary management control that is often 
lacking in prototyping efforts and yet to maintain technical 
creativity. Martin defines estimation and computation 
approaches, cost/schedule drivers, and project roles. She 
provides job descriptions, descriptions for documents 
needed, and guidelines € O K  time and manpower required for 
the rapid prototype through refinement stages for expert 
systems of different sizes. 

Martin's approach, although comprehensive and detailed, 
cannot be readily adapted to the NASA/GSFC environment. The 

3-13 

9 0 6  



E S C I E  is geared to commercial ventures, i.e., to companies 
that wish to enter the expert system market and produce 
multiple copies of one product. For example, the main 
emphasis of the initial feasibility stage is to determine 
what markets are available for the company to pursue. Such 
an emphasis is not applicable in the NASA/GSFC environment 
where the emphasis during this phase would be determining 
which problems are suitable for an expert system solution. 
Similarly, the productization stage is superfluous in the 
NASA/GSFC environment as the expert system will not be 
marketed but rather will be used for a specific project or 
mission. Even if the productization stage is removed, the 
remaining stages require more detail, especially in the 
management areas of staffing, controlling, and planning. 
Her staffing profiles are also somewhat idealistic. 

3.1.5 THE KBS LIFE CYCLE 

Richardson and Wong [LO31 describe the knowledge-based 
system ( K B S )  life cycle they developed for the Systems 
Autonomy Demonstration Project at the NASA/Ames Research 
Center. 'They developed this life cycle during a workshop on 
the verification and validation of knowledge-based systems. 
In fact, the motivation for the KBS life cycle i.s to 
facilitate this verification and validation process. 

The KBS life cycle consists of five phases: requirements, 
prototype, KBS build, test, and delivery and monitor. This 
life cycle is based on the traditional software life cycle 
and, although modified in places, it makes extensive use of 
the experiences gained with the traditional life cycle. The 
differences occur primarily in changes and improvements to 
the requirements document, the addition of an iterative 
prototyping loop, and the inclusion of the user in the 
development process. 

3-14 

906 



The requirements document, as originally discussed in [lO3], 
refers to the high-level document that is given to the 
developers at the beginning of the project and before the 
serious task of requirements analysis begins. For 
traditional software, this document is meant to be complete; 
however, expert system requirements are not usually that 
well defined. Richardson and Wong state that this initial 
requirements document must accommodate the prototyping 
process by specifying the money, time, and other resources 
available for prototyping. In addition, the requirements 
document must include statements regarding the goals of the 
prototype(s) as well as the available resources. One goal 
of the prototype phase is to add details to the requirements 
document. During the prototype phase, the following 
activities take place: acquiring/extracting the knowledge, 
building the prototype, evaluating the results, augmenting 
the requirements document, and providing direction to the. 
next prototype. The duration and extent of the prototyping 
effort are defined in the requirements document. Richardson 
and Wong recommend that a notebook be maintained during the 
prototyping effort to document design decisions. Although 
they do not specify whether all decisions are to be 
recorded, they do require that everything likely to be 
included in the final system be documented. The exact 
content of the notebook can be determined by the development 
team and, t o  a cer.tain extent, is dictated by the system 
requirements. 

Richardson and Wong define an increased role for the user 
during expert system development. They suggest that the 
user have more discretionary power in approving the use of 
the KBS. In addition, the users are represented by the 
domain expert during the prototyping phase, Also, because a 
KBS may be used in a different manner o r  in situations not 

3-15 

906 



foreseen during the development phase, Richardson and Wong 
have extended the KBS life cycle to include user reaction 
and comment after delivery of the system. They also state 
that the user is least effective during the prototyping 
phase. 

The KBS life cycle approach was discovered late in this 
study (early November). As a result, many details of the 
KBS life cycle are unavailable and cannot be fully 
evaluated. Interestingly, many of the concepts proposed by 
Richardson and Wong had already been identified as 
requirements for an expert system development methodology 
and had also been incorporated in the expert system 
development methodology outline being prepared for this 
task. Many similarities exist between the results and 
recommendations of this study and the KBS life cycle. These 
recommendations were presented in a preliminary version of 
this document prior to the receipt of the Richardson and 
Wong paper. These similarities may be due in part to the 
similarity between the NASA/Ames and NASA/GSFC environments 
and goals. They also may be due to the fact that the 
methodology outline being proposed by this task and the KBS 
life cycle are both based on the traditional software life 
cycle model. 

Differences certainly exist between the methodology to be 
proposed to NASA/GSFC and the KBS life cycle. One immediate 
difference is the amount of user involvement. CSC research 
indicates the need for even greater user involvement than 
that indicated by Richardson and Wong. As more details of 
the KBS life cycle become available, other differences and 
similarities are sure to arise. 

3.1.6 THE WATERFALL MODEL 

Expert systems may or may not be standalone entities. They 
may be self-contained or they may be a part of a larger, 

3-16 

9 0 6  



traditional system. Therefore, at a minimum, an expert 
system methodology will probably be required to adopt either 
directly or by reference many aspects of the traditional 
development methodology. Zack 1 8 4 1  emphasized that at least 
50 percent, if not more, of the time spent on the 
development of an expert system involves the traditional 
activities of gathering data and coding it. Therefore, an 
expert system methodology may simply be a subset of a 
traditional methodology, and may need only to address those 
areas unique to expert system development and the interfaces 
between them and the traditional areas. 

Only in the work of Richardson and Wong 11031 was reference 
made to the use of the waterfall method for developing 
expert systems. However, task members concur that adopting 
existing aspects of the waterfall model, wherever 
applicable, may be desirable, especially given the wide 
familiarity with and overall acceptance of the waterfall 
model for traditional software systems. 

This conclusion is based on a number of factors. First, 
most interpretations of the waterfall model recognize the 
importance of an integrated management and technical 
approach to software development, and piace great emphasis 
on defining the activities that take place within the 
life-cycle phases, on planning and replanning these 
activities, and on monitoring and controlling the entire 
process. Even a preliminary assessment of the requirements 
to be levied on an expert system methodology indicates that 
both management and technical issues must be addressed. 

Second, the life-cycle phases defined in the waterfall model 
are well defined and commonly used throughout most 
industries and disciplines, including space applications. 
Although individual methodologies may divide the phases 

3-17 

906 



differently (e-g., establishing separate phases for 
preliminary and detailed design), there is, for the most 
.part, agreement as to the basic phases required for good 
software development, the activities to be undertaken in 
each phase, and the end products of each phase. 

3.1.6.1 Description of Waterfall Model 

The waterfall model, as described here, is the basis for 
Mission Operations and Data Systems Directorate (MO&DSD) 
Systems Management Policy [45] and Software Development 
Policy [46]; for Defense Systems Software Development 
Standard (DOD 2167) 1791; and for CSC's Digital System 

1 Development Methodology (DSDMQ) [47], all successful 
system development methodologies. 

The waterfall model is divided into six distinct phases, 
defined as follows: 

Requirements Analysis--Involves the analysis and definition 
of the complete set of functional, performance, interface, 
data base, and user-system requirements. These are 
documented in a requirements specification, which serves as 
input to the next phase, and are presented to the client in 
a formal requirements review. 

Desiqn--Involves two design stages. Preliminary design 
involves the allocation of requirements defined in the 
previous phase to high-level components. These are 
documented in a preliminary design specification and are 
presented to the client in a formal design review. Detailed 
design involves a more detailed definition of the design by 
further breaking down the preliminary design, allocating the 

~~~ ~ ~ 

DSDM is a registered trademark of CSC. 

906 
3-18 



high-level functions to individual units. Again, these are 
documented and presented formally to the client. 

Implementation--Comprises the design (i.e., program design 
language), coding, and testing of each unit defined in the 
detailed design. For large software development efforts, 
the build approach is taken during this phase. Builds 
permit subsets of requirements to be met in each build, 
thereby avoiding the "big-bang" approach, i.e., integrating 
the system initially in one large step. Each build is 
documented in an updated design document and, depending on . 

the system, a user's guide, operations manual, or 
maintenance manual. Each build begins with a review that is 
usually somewhat less formal than a critical design review. 

-- Integration and Test--Involves the integration of the 
individual software elements and the testing of this 
integrated entity as a whole. Requirements, design, and 
operations/user documentation serve as the basis for test 
documentation. This phase ends with a test readiness review 
that documents the test results and confirms that the system 
is ready to proceed to the next phase. 

c 
Acceptance Test--Involves verification by an independent 
group that the system a s  developed meets the requirements as 
specified in the requirements specification, and that the 
operations/user documentation accurately represents the 
system. An operational readiness review or acceptance 
review concludes this phase. After the final review, the 
developed system is either delivered to the client or enters 
the maint&nance phase. 

Maintenance--Includes the activities performed in all of the 
above phases. The extent of these activities depends on the 
nature and scope of changes introduced or of problems 
encountered. 

3-19 

9 0 6  



This life cycle is illustrated in Figure 3-1 and is taken 
from reference [46]. It represents the methodology used by 
the MO&DSD at GSFC. 

3.1.6.2 General Limitations of the Waterfall Model 

The waterfall model is a product of the 1970s and has been 
criticized recently as not being wholly applicable t o  or 
responsive to today's software development environment. 
Specific criticisms of the waterfall method appear to focus 
on the fallacy of phase independence, the long duration of 
the Life cycle, and the lack of early user involvement. 

The waterfall method assumes that each phase of the life 
cycle is completed before the next is begun. In fact, the 
output from one phase serves as input to the next. As Lantz 
states in 1681, the system development process may be viewed 
"as a set of rigorously distinct phases performed at 

. separate' times." Lubars and Harandi [50] point out this is 
not actually true since feedback takes place between the 
implementation and the specification of requirements. New 
requirements commonly are added or deleted after the 
"completion" of the software requirements review. In CSC's 
experience, even testing, the last phase, can have an impact 
on the implementation phase as well as on the earlier 
phases. In reality, no phase is ever completely finished. 
Lubars and Harandi 1503 also indicate that the time between 
the introduction of specifications (requirements) and the 
completion of the final product is often so  long that 
specifications often change. If specifications are frozen, 
the product may well be obsolete upon delivery. Gladden 
[69J points out that this long time interval can also erode 
the customer's confidence in the work being performed, which 
may in turn be manifested in new, altered, or expanded 
requirements. 

0 

3-20 
906 



* 

SOFTWARE 
REQUIREMENTS 

ANALYSIS 

SOFTWARE 
DESIGN 

SOFTWARE 
DETAILED 1 DESIGN , SOFTWARE 

REQUIREMENTS 
REVIEW 

\ BUILD 

A I SOFIWARE 
PRELIMINARY IMPLEMENTATION 
DESIGN 
REVIEW 

A 
c R m w  
DESIGN 
REVIEW 

RELEASE 

SOFTWARE 
INTEGRATW 

AND 
SYSTEM TEST 

I 1 

BUILD TEST 
INTERFACE READINESS 
REVIEWS REVIEW 

SOFTWARE 
ACCEPTANCE I TEST 

A 
SOFMlARE 
TEST 
REVIEW 

SOFTWARE 
MAINTENANCE 

A 
ACCEPTANCE 
TEST REVIEW 

Figure 3-1. ThiA Software L i f p  Cycle (adapted fro?; [ 4 6 ! 1  

3-21 
906 



Lubars and Harandi [50] also criticize the lack of early 
end-user involvement that can lead to a system that does not 
address user needs and hence, which the users will not o r  
cannot use. 

One way to mitigate r i s k s  associated with the long duration 
and the lack of early user involvement has been to develop 
the system in a series of builds. A build can be either 
demonstrated o r  released to the customer for interim use 
during development. The customer can monitor the status of 
the development effort, and the users can exercise the 
system to determine whether their requirements are being 
properly implemented. Demonstration of the build assures 
the customer that the requirements are being properly 
addressed, but unless the end user is included in this 
process, the user may still disagree with this assessment. 
The customer and user often view the product from different 
perspectives. 

Gladden [69] a l s o  claims that the "villain" in any software 
failure is a set of incomplete, poorly thought-out 
requirements. This is not a limitation inherent in the 
methodology but is rather an improper application of the 
methodology. The methodology "allows" changes but  o n l y  in 

terms of a change in the scope of the development effort. 
Extensive late changes can have serious consequences to the 
development project. 

Agresti 1771 has presented an interesting Limitation to the 
waterfall methodology. He points out that tools exist for 
all phases of the life cycle, but that in many cases, the 
tools and the software development environment span several 
of the phases of the life cycle. He contends that tools 
that span multiple phases challenge the wisdom of the rigid 
partitioning of software development into phases. 

3-22 

906 



An additional limitation to the waterfall method is that it 
is document driven. Each phase produces a product, usually 
a document or a set of documents, that "completes" that 
particular phase. Due to technological advances or to 
reinterpretation, changes to requirements do OCCUK. When 
this happens, the effect of the change can ripple throughout 
the entire life cycle, often affecting design, code, and 
product description (specification). There really is no 
such thing as a "simple requirement change" and numerous 
changes can lead to extensive work. This is one reason 
researchers are investigating automated code generation 
tools and specification languages (cf. [22], [25], [50], 

1701, 1741, C88J)- 

Recently the Defense Science Board issued its Final Report 
on the Software Task Force [ 7 8 ] .  In this report, DOD 2167 
is criticized for being too rigid, not allowing prototyping, 
and failing to conform to "best modern practices." Some of 
this criticism was addressed in the MO&DSD methodology, 
which does allow prototyping, in certain cases, up to the 
point of the critical design review. 

. .  

John L. Connell proposed a new methodology at a formal 2-ddy 
seminar on software rapid prototyping in Washington, DC, 
sponsored by the Education Foundation of the Data Processing 
Management Association. The intent of Connell's methodology 
is to free the traditional life cycle from its rigidity and 
phase independence and to involve the user early in the life 
cycle. 

Connell suggests that a more appropriate name for this 
methodology is dynamic requirements modeling. He feels the 
term rapid prototyping conjures up many negative illusions, 
including a license to hack. Connell's approach combines 
the iterative nature of prototyping with the structured 

3-23 

906 



techniques of DeMarco [Sl]. His rapid prototyping 
environment consists of a relational data base, suitable 
hardware, and structured software development techniques 
[SO]. His approach does not have universal application. It 
is geared to highly interactive systems and may not be 
applicable to scientific problems typical of space 
applications. Nevertheless, several concepts presented by 
Connell were assessed as useful and are included in the 
recommendations presented in Section 4 .  

To summarize, the limitations of the waterfall method are 
phase independence, long duration, and lack of early U G ~ K  

involvement. The major limitation is that it does not allow 
iteration between the phases of the life cycle. The build 
approach satisfactorily addresses the long-duration and 
user-involvement problems but fails to deal with the issue 
of phase independence. It permits iteration within a phase 
but does not allow another iteration of requirements 
analysis o r  system design after implementation has begun 
unless requirements change dramatically. 

3.2 COMPARISON OF WATERFALL AND EXPERT SYSTEM APPROACHES 

A careful analysis revealed that many analogous activities 
take place within the traditional waterfall method and the 
general categories of development of an expert system 
detailed in Section 3.1.1. In this section, the expert 
system approaches are viewed at in the context of the 
waterfall method, with similarities and differences 
identified and discussed. This comparison is organized 
along the lines of the traditional life-cycle, beginning 
with requirements definition and ending with operations and 
maintenance, since there is common agreement as to this life 
cycle. 

Table 3 - 3  summarizes the results of the comparison of the 
waterfall method with the standard expert system development 

3 - 2 4  

9 0 6  



Table 3 - 3 .  Comparison of Traditional and Expert 
System Software Life Cycles 

TRADITIONAL SOFMlARE SYSTEM 
~ 

REQUIREMENTS ANALYSIS 

REVIEW REQUIREMENTS FOR 

DEFINE ADDITIONAL REQUIREMENTS 
REMOVE REDUNDANTANACCURATE 

SOFMlARE REQUIREMENTS REWEW 

COMPLETENESS 

REQUIREMENTS 

DESIGN 

TOP-DOWN STRUCTURED DESIGN 

DESIGN REVIEWS 

IMPLEMENTATION 

CODE SYSTEM USING 

UNIT TEST 
BUILD APPROACH 

PROGRAMMING LANGUAGE 

- INCREMENTAL IMPLEMENTATION 
OF REQUIREMENTS 

SUCCESS = ACCEPTANCE OF THE SYSTEM 

VERIFICATION AND VALIDATION 

UNIT TESTS 
MODULE TESTS 
INTEGRATION TESTS 
INTERFACE TESTS 
ACCEPTANCE TESTS 

DPERATIONS AND MAINTENANCE 

CORRECT ERRORS 
ENHANCE SYSTEM 

CONFIGURATION MANAGEMENT 
- SOFTWARE 
- DOCUMENTATION 

EXPERT SYSTEM 

KNOWLEDGE ACQUISITION 

GATHER KNOWLEDGE 

REflNE KNOWLEDGE 

COMMUNICATION BETWEEN EXPERT 
AND KNOWLEDGE ENGINEER 

KNOWLEDGE REPRESENTATION 

KNOWLEDGE BASE 
CONTAINS FACTS AND RULES 

KNOWLEDGE REPRESENTED 
THROUGH RULES, FRAMES, 
SEMANTIC NETS 

COMMUNICATION BETWEEN 
EXPERTS, KNOWLEDGE 
ENGINEER, PROGRAMMERS 

IMPLEMENTATION 

'CODE' SYSTEM USING 
AI TOOLS 

'UNIT TEST 
ITERATE OVER KNOWLEDGE 
ACOUISITION. AND REPRESENTATION, 
REQUIREMENTS ANALYSIS, DESIGN, 
AND CODING 

SUCCESS = KNOWLEDGE GAINED 
REGARDING KNOWLEDGE 
REPRESENTATION AND DESIGN 

VERIFICATION AND VALIDATION 
UNIT TESTS 
MODULE TESTS 
INTEGRATION TESTS 
INTERFACE TESTS 
ACCEPTANCE TESTS 

OPERATIONS AND MAINTENANCE 

CORRECT ERRORS 
ENHANCE SYSTEM, 
INCLUDING CHANGING 
KNOWLEDGE 

CONFlGURAllON MANAGEMENT 
- SOFMlARE 
- DOCUMENTATION 
- KNOWLEDGE BASE 

906 3-25 



methodology. The table lists only the major activities 
within the traditional software methodology and compares 
them, as much as possible, to analogous or parallel 
activities. Knowledge acquisition and knowledge 
representation are compared to requirements analysis and 
design, respectively. This does not imply that knowledge 
acquisition is the same as requirements analysis or that 
knowledge representation is design. Elements of 
requirements analysis and design are found in knowledge 
acquisition and representation, but the latter are much 
broader concepts, as discussed in Sections 3.2.1 and 3.2.2. 
Also, for the traditional waterfall software development, 
the stages follow sequentially; for the expert system, the 
ordering in the table is not chronological. Knowledge 
acquisition, knowledge representation, and implementation 
may occur in parallel. 

3.2.1 REQUIREMENTS ANALYSIS PHASE 

In the traditional requirements analysis phase, a set of 
requirements drives system development. The development 
team analyzes the initial set of requirements for 
completeness; defines additional requirements from [he 
i n i t i a l  s e t :  and removes redundant and/or  i n a c c u r a t e  

requirements with management concurrence. This phase ends 
with a formal requirements review at which time a baseline 
is established and, theoretically, the requirements are 
finalized. In practice, requirements change and the 
baseline is updated through configuration' control mechanisms 

An analogous process takes place during expert system 
development. The development team generally receives a 
description of the desired results or of the purpose of the 
expert system, rather than a set of requirements (i.e., no 

requirements, per s e ,  are provided). The development team 

3-26 

906 



performs knowledge acquisition rather than requirements 
analysis, knowledge being the essential part, i.e., the 
driver, of the expert system. That knowledge acquisition is 
a key concern in expert system development is evident from 
the large number of papers written on the subject (see, for 
example, 1281, 1331, 1341, 1421, 1641, 1651, 1761, [loll). 

Most often, development of an expert system requires that an 
expert be available who possesses a narrow and deep domain 
of expertise. This is not usually true of space 
applications; more Likely, a body of experts will 
collectively supply the development team with the required 
knowledge. The development of space applications expert 
systems, therefore, introduces an additional problem of 
selecting from among possibly conflicting knowledge. The 
issue of multiple experts has been discussed by Boose [19] 
and Woolf and Cunningham ( 2 4 1 .  Experts must reach a 

consensus before an expert system can be implemented. 
Therefore, a mechanism (e.g., meetings) to arrive at a 
commonly agreed to and acceptable solution is needed. Zack 
1841 and Martin 1 8 5 1  both propose that a lead expert be 
appointed for the project. 

The existence of expert systems introduces a new philosophy 
to problem solution. Traditionally, a problem is analyzed 
and, if feasible, high-level requirements are defined. Then 
the development team begins the software development effort 
with an analysis of the given requirements. Now the problem 
must first be analyzed for its suitability as an expert 
system, i.e., does an expert system represent the correct 
approach to the problem solution. This analysis must OCCIJK 
in the concept definition phase and is performed before any 
requirements are given to the development team. 

The quality of traditional requirements definition is judged 
by the completeness of the requirements at the time of the 

3-27 

906 



requirements review. The goal of the development team is to 
have everything defined in the initial phases to the 
greatest extent possible. The opposite is true for an 
expert system. Typically only expert system goals and 
high-level requirements are known at the beginning. The 
requirements are not thoroughly defined until the completion 
of the final prototype. 

Who conducts the various activities related to requirements 
analysis? In the traditional method, the development team 
during the requirements analysis phase consists of 
experienced system engineers and/or senior analysts. For an 
expert system, the lead figures in the early stages are a 
knowledge engineer (who may also be the developer), who is 
skilled in capturing the knowledge of the expert, and the 
expert, someone capable of conveying expertise to the 
knowledge engineer. These may not necessarily be separate 
individuals in the NASA environment, where many of the 
experts possess enough computer knowledge to encapsulate 
their expertise. Jackson [SZ] describes his experiences as 
both the "expert" and the developer of two small expert 
systems used to evaluate scientific proposals for 
observations with the Hubble Space Telescope. In an 
interview, he stated that writing his systems in OPS5 was 
rather straightforward even with his limited computer 
background. A computer expert familiar with OPSS and A I  was 
available to help when Jackson did experience some 
difficulties. This single-person approach is not practical 
for large systems when more than one knowledge engineer is 
necessary, but it does suggest that an expert, with the 
desire and ability, can take a more active role in expert 
system development over and above simply providing knowledge 
and expertise. 

3-28 

906 



3.2.2 DESIGN PHASE 

In the traditional methodology, the requirements baselined 
at the requirements review serve as the system's goal. The 
next phase is to design a system that, when implemented, 
will satisfy these requirements. During this phase the 
design is depicted graphically, often in the form of 
structure charts. The design is reviewed at formal reviews. 

For an expert system, a similar graphical procedure may be 
used but the design philosophy differs. In the traditional 
methodology, the designer works from a specific set of 
requirements; whereas for an expert system, the developer 
formalizes the structure of the expert system, while trying 
to determine through knowledge acquisition the actual 
functionality and behavior of the expert system. The 
knowledge engineer is still acquiring knowledge from the 
expert while defining the representation of that knowledge. 
.Thus knowledge acquisition and knowledge representation are 
concurrent and equally important activities in this phase. 
A useful discussion of the design of expert systems is given 
in detail in 1 8 2 1  and summarized in [loo], where Kline and 
Dolins identify five questions that must be considered when 
designing an expert system: 

c, 

0 When is the information needed t o  solve the problem 
ava i 1 a b 1 e? 

0 What kind of connection is there between the 
evidence and the hypotheses? 

0 What counts as a solution and are multiple 
solutions allowed? If s o ,  how many solutions are 
there Likely to be? 

0 How accommodating is the expert system program 
environment? 

0 Will the program expend its effort wisely? 

3-29 

906 



One aspect of traditional and expert software design is the 
modularization of the software structure. It is considered 
important to structure the software into independent modules 
so that changes affect as little of the software as 
possible. The guiding principle behind this premise is ease 
of maintenance. This philosophy is also being applied in 
expert system development. Lindenmayer, Vick, and Rosenthal 
193, Medeiros [37], and Jacob and Froscher [ 4 4 ]  discuss the 
importance, in terms of maintenance, of modularizing expert 
system software. Their views were reinforced in interviews 
with Lindenmayer, Jon Buser, and Andrea Weiss who all 
strongly advocated a modularized design. Unfortunately, no 
methodology touches on how to modularize an expert system. 
For PRESS, Bush and Critchfield combined related rules into 
a module that was independent of all other modules: rules 
that were used by more than one module were placed in a 
utility module. Buser suggested that the information hidi.ng 
techniques of Ada may be useful for modularization. Other 
possible ways to modularize an expert system are to separate 
the inference engine from the knowledge domain, to 
incorporate modularity into the knowledge base (as suggested 
by Bush and Critchfield and by Buser), and within the 
knowledge base separate the rapidly changing knowledge f r o m  

the more stable knowledge. 

It is generally recognized that modular structure in 
traditional software has made software design and 
maintenance easier and has helped control cost. Keller [5] 
extends the techniques of structured analysis and structured 
design to expert system development. Whether this is the 
proper approach to achieving expert system modularity 
remains to be seen. Ebrahimi [ 6 7 ]  suggests another 
approach. He develops high-level protocol templates for the 
interaction of the domain expert, the knowledge engineer, 

3 - 3 0  

906 



and the system during knowledge acquisition; identifies 
areas that are likely to be implemented as independent 
modules with predefined interfaces; and analyzes the 
acquisition, reasoning, and explanation subsystems for user 
input, the transformation of the user input to subsystem 
input, subsystem input, subsystem functions, subsystem 
output, transformation of the subsystem output to user 
output, and the user output. 

3 . 2 . 3  IMPLEMENTATION PHASE 

Traditional development differs most from an expert system 
development during implementation. In the traditional 
approach, the programmer takes the design, which satisfies 
the requirements, and converts it into a Working program 
using the appropriate language. The expert system 
developer, however, has an advantage in that the available 
expert system development tools are quite advanced. For 
example, shells make the "coding" of an expert system much 
easier than that of a traditional language (e.g., FORTRAN) 
since shells are often closer to English and have the 
inference engine built into them. This allows the 
developers to concentrate on the implementation of the 
expertise rather than on coding low-level details. 

The role of the developer is also different. In the 
traditional methodology, the programmer is relatively 
constrained (i.e., is allowed to implement only the design 
provided based on the requirements provided). In theory, 
the programmer is not invited to investigate the 
requirements o r  the design for flaws or deficiencies, as 
these are expected to have been exposed in earlier reviews. 
The developer of an expert system, on the other hand, is 
.still exploring ways to improve the system, extend its 
capabilities, and determine its completeness. The developer 

c 

3-31 

906 



is still capturing expertise and incorporating it into the 
framework of the expert system even as the expert system 
itself is being implemented. 

The iterativeness of expert system development can be 
compared somewhat to the build approach in traditional 
software development. In the build process, the 
requirements of the total system are divided into subsets so  

they can be implemented incrementally. A specific 
requirement may be partially implemented in one build and 
completed in a later build, or it may be ignored until a 
later build. The last build, however, must totaLly 
implement all the requirements. An expert system can be 
implemented in a similar fashion. An idea can be tried and 
tested in an early version of the system and expanded in 
later versions if proven successful. 

The build approach and the prototype iterations of an expert 
system differ in a number of ways. First, the build 
approach takes the known, and presumed complete, 
requirements and divides them among the builds. In an 
expert system, all requirements are not known initially. 
Hence, iteration occurs within and between the analysis, 
design, and implementation phases, not just within the 
implementation phase. 

Another difference, and a major one, is the perception of 
success and failure. In expert system development, a . 

prototype may be considered successful even if it fails. 
The expert system developer accepts the possibility that an 
idea may have to be discarded if it does not work, even if 
this implies a complete restart. It is, in fact, expected 
that some paths tried in an expert system will not work. 
Many even recommend that the tool or.shel1 originally 
purchased to accomplish the implementation be discarded if 

3-32 

906 



it is not satisfactory. Such a possibility must be expected 
and requires a carefully prepared contingency plan. On the 
surface, this could be construed as "starting over from 
scratchv1 when in reality progress has been made by 
eliminating one or more design or implementation options. 

In the build approach, success is measured with the 
acceptance of the implemented software by the independent 
test team: i.e., the software as built meets the 
requirements written some time ago. Software that does not 
fully or accurately meet requirements has discrepancy 
reports written against it; rarely is it discarded 
wholesale. Such a move would be unplanned and would have 
major schedule and budget repercussions. 

3 . 2 . 4  TEST PHASE 

The purpose of testing is essentially identical for 
traditional software systems and expert systems: to ensure 
that the functional and performance requirements are 
satisfied. In general, this view is supported by the 
interviews, although dissenting opinions 1661 do exist. An 
assumption made $n determining that this phase is the same 
for both types of software is that when testing begins, the 
requirements of the expert system have been established and 

are documented. Only then can verification and validation 
proceed. Green and Keyes [66] do not accept the validity of 
this assumption. They state that requirements 
specifications for expert system software are often 
nonexistent, imprecise, or rapidly changing. Often they are 
obtained from a system specification (Type A specification) 
or from informal specification by prototyping and 
refinement. The intermediate specifications (Type B5 or C5) 
are either not produced or, if produced, not adequate. The 
result is that the final requirements cannot be traced back 

.2 

3 - 3 3  

906 



to the orig.ina1 specifications. If precise requirements are 
not available, then it is not possible to write the precise 
test procedures required of conventional verification. Even 
if traceability to the requirements were possible, Green and 
Keyes believe that conventional verification is still not 
possible because the desired results are the product of the 
interaction of the knowledge base and the inference engine. 
Finally, Green and Keyes state that the results of the 
expert system cannot be checked objectively; that is, the 
results are compared to the results given by a human 
expert. The human, of course, is subject to prejudices and 
biases and can even be in error. Accordingly, a vicious 
cycle occurs: no one requires the verification and 
validation of an expert system: verification and validation 
are not required because no one knows how to do it; no one 
knows how to do the verification and validation of an expert 
system because no one has done it. 

A more optimistic point of view is given by Culbert, Riley, 
and Snavely [ 9 5 ] .  They state that it is possible to verify 
and validate expert systems if the differences between 
traditional software and expert systems are recognizm and 
if expert systems are written to make verification and 
validation easier. Requirements can be documented after the 
completion of the prototyping phase. This allows the test 
plan, €rom which the test procedures are derived, to be 
written. They a l s o  suggest that for t'he NASA environment, 
Flight Technique Panels can be used to verify expert 
systems. These panels regularly review not only the 
procedures used to resolve the problem but also the analysis 
techniques used to develop the procedures. Validation 
occurs through exhaustive simulations. 

3 - 3 4  

906 



Guidelines for expert system verification are given by 
Goodwin and Robertson [91], and guidelines for expert system 
validation are given by O'Keefe, Balci, and Smith [ 9 8 ] .  

Castore [ 9 4 ]  presents a formal approach to verification and 
validation of knowledge-based control systems. Goodwin and 
Robertson provide the definition of a verified expert 
system, discuss verification of traditional software, and 
conclude that the verification techniques of traditional 
software can be extended to include expert system software. 
More attention needs to be given to design methodologies and 
documentation and coding standards. Once these are 
established, tools can be developed to facilitate the 
verification of an expert system. 

O'Keefe, Balci, and Smith [ 9 8 ]  discuss problems that may 
occur when validating an expert system. Specifically, they 
discuss what to validate, what to validate against, what to 
validate with, when to validate, how to control the cost of 
validation, how to control bias, and how to cope with 
multiple results. Their guidelines for validating expert 
sys t em 

c 0 

0 

e 

0 

e 

performance can be summarized as follows: 

Validate the expert system only against an 
acceptable performance range for a prescribed input 
domain. 

Build validation into the development cycle. 

Consider the risk in using invalid systems (user's 
risk) relative to the risks in not using valid 
systems (builder's risk). 

Choose the appropriate qualitative validation 
met hod. 

Use quantitative validation methods where 
applicable. 

3 - 3 5  

906 



Gaschnig et al. [14] give a thorough, comprehensive, 
high-level perspective of expert system testing. They 
discuss what to test in an expert system and when to test 
it, and they suggest four principles that should be applied 
when evaluating expert systems: 

0 Complex objects or processes cannot be evaluated by 
a single criterion. 

0 The larger the number of distinct criteria 
evaluated or measurements taken, the more 
information will be available on which to base an 
overall evaluation. 

0 People will disagree about the relative 
significance of various criteria according to their 
respective interests. 

0 Anything can be measured experimentally as long as 
the mechanism for taking the measurements is 
defined. 

These principles apply equally to testing traditional 
software. Later, Gaschnig et al. give seven key issues that 
must be addressed in evaluating expeft systems: 

6 

0 The need for an objective standard of excellence 

0 Concerns regarding biasing and blinding 

0 The elimination of irrelevant variables 

0 The definition of realistic standards of performance 

0 The need for sensitivity analysis 

0 Problems with confounding interactions among 
knowledge sources 

0 The need for realistic time demands on evaluators 

Again, these issues are equally appliable to testing 
traditional software. 

3 - 3 6  

9 0 6  



3.2.5 OPERATIONS AND MAINTENANCE PHASE 

After the traditional system has been accepted and made 
operational, the system enters the maintenance phase. In 
this phase, problems not discovered during development and 
testing are identified and corrected, and enhancements are 
made under carefully controlled conditions. The situation 
is similar for an expert system, with one important 
difference: the maintenance of the knowledge base. 

Frail and Freedman 1511 present some observations and 
guidelines for the delivery of an expert system: 

0 Delivery of an expert system should be considered 
in the earliest stage of development. 

0 Production rules are useful for prototyping a small 
system rapidly to demonstrate feasibility. 

0 Adding rules does not necessarily improve an expert 
system. 

0 If an expert system product has been successfully 
used to solve problems in several separate but 
similar domains, it may be cost-effective to 
transform that system into a shell. 

0 Is the final deliverable system still an expert 
system? 

Not all of these observations and guidelines apply 
specifically to the delivery of an expert system, but they 
do raise some interesting philosophical points that need t o  

be addressed during the maintenance phase. 

Ther first observation applies to both expert and 
traditional systems: the second is more concerned with 
design. In fact, Frail states that after the demonstration 
of feasibility, the remainder of the system should be 
developed with static knowledge. No additional rules or 
knowledge should be added to the system. 

3-37 

9 0 6  



The third observation has significant maintenance 
implications. The major difference between an expert system 
and a traditional system is that the expert system must be 
concerned with truth maintenance. When a change is made to 
the knowledge base, has the integrity of the knowledge base 
been compromised? In the traditional software system, the 
integrity of data in the data base is the responsiblity of a 
data base administrator. An analogous position may be 
needed on an expert system project to control the knowledge 
base. 

The fourth observation has to do with economics for the 
company responsible for developing the expert system, 
whereas the final observation is a philosophical one. The 
question is whether a delivered expert system remains 
stagnant. Knowledge continually increases as a person 
learns new facts or better ways to do something. Will the 
delivered system retain the same knowledge base, or will the 
knowledge base change in parallel with human knowledge? If 
the latter, the maintenance of an expert system must include 
mechanisms for changing the knowledge base. 

An important activity during operations and maintenance is 
configuration control of the system and its documentation. 
In addition, whenever a change is made t o  the system, 
regression testing is essential. A key to the ease of 
maintenance is the modularization of the system, as was 
discussed in Section 3.2.2. In the seminar on software 
rapid prototyping, Connell stated that configuration control 
of a prototyped system should be the same as that of a 
traditionally developed system. When a change has been 
identified, however, it should be implemented using 
prototype or iterative paths rather than the rigid, 
traditional path. 

f- 

3 - 3 8  

9 0 6  



Practical experience has been gained with the maintenance of 
R1 or XCON, a large system used by DEC to configure hardware 
items into a compatible system. Kraft [12], Soloway, 
Bachant, and Jensen [41], and van de Brug, Bachant, and 
McDermott [73] describe the difficulties of maintaining this 
system. Two main difficulties have arisen in the 
maintenance of XCON: as XCON grows, it is becoming more 
heterogeneous, predictability in the rule base is 
exceedingly difficult. The maintainer needs to know more 
information than is contained in the knowledge base in order 
to do the job. The reason a specific rule exists or why 
rules fire in a specific sequence is not known. In 
addition, it is not obvious what effect changing a rule has 
on the remainder of the knowledge base. The maintainer 
needs to understand at least a major portion of the 
knowledge base before a ru1.e can safely be changed. The 
need for structure and adequate documentation is obvious. 
Soloway et al. refer to a programming tool that has been 
developed that "provides on-line enforcement of coding 
guidelines" that could mitigate the documentation problem. 

3.2.6 MANAGEMENT CONTROLS 

CSC, as well as other companies, has learned that successful 
delivery of a quality product requires certain controls. 
These generally are implemented through the product 
assurance and project control elements of the project. 

In the readings, these areas were essentially ignored, even 
though authors agreed to the necessity of addressing them. 
The interviewees confirmed this position but had no idea how 
to define or implement these areas: they were interested 
more in "technical issues." 

Project control monitors adherence to budgets and schedules, 
reporting results regularly to permit corrective action at 
the earliest possible time if variances are found. Product 

3 - 3 9  

9 0 6  



assurance monitors the technical quality of the product 
through a series of reviews, inspections, and audits, the 
results of which are reported to management. Management 
thus has the data needed to retain control over the 
project. An expert system development methodology clearly 
must address these issues, because the nature of expert 
system development makes monitoring and control particularly 
difficult. 

3 . 3  INTERVIEW RESULTS 

As indicated in Section 2 . 2 ,  the interview process, although 
time consuming, supplied useful results. The interviews 
allowed task members to follow up immediately on specific 
issues that arose and to ask for more detail about a 
specific issue that would not normally be written in a 

paper. The list of interviewees is given in Appendix C. 

Analysis of the interviews uncovered a number of common 
themes. Interviewees often had similar responses to or 
suggestions about various issues or areas of concern. This 
section is organized by the major topics raised during the 
iwerviews. Responses in each area are synthesized and 
summarized rather than detailed individually. This approach 
eliminates redundancy and highlights those comments 
considered to be most significant or universal. In some 
instances, the source of a comment is placed in parentheses 
following the comment. 

<. 

Methodoloqy--Although most .interviewees did not follow a 
formal methodology, all agreed that it is important to 
develop methodology that assists in building a better, 
maintainable expert system. 

Communication--Informal and frequent communication with the 
expert and users is important for the developers. The lack 
of contact with an expert negatively affected a prototype 
development (Das); on the other hand, satisfactory results 

3 - 4 0  

906 



were achieved with adequate access to the expert and/or 
users during the development of an expert system (Gilstrap, 
Botten, and others). 

Frequent communication can be achieved by using a 
prototyping technique (all interviewees). The prototype 
allows the users and experts to comment timely on the 
approach taken by the developers and to clarify any 
misunderstandings. Artificial intelligence tools encourage 
prototyping and thus facilitate communication (Botten, Bush, 
Critchfield, Das, and GilStKap). In addition, the mai.n 
users and the expert must be part of the project (Weiss), 
but the expert must be willing to give time to the project 
(Botten, Bush, Critchfield, Das, and GilSttap). 

Tools--Tools are so important to expert system development 
that their development must be made part of the expert 
system development effort (Buser and Knoblock). Tool 
development must be planned, budgeted, and scheduled: 
accordingly, at least one project member should be assigned 
full time (at least initially) to that task (Buser). 

Schedulinq--All interviewees acknowledge that the lack of 
precise requirements leads to difficulty scheduling expert 
system development. The experience level of the knowledge 
engineer should help to minimize this problem: the more 
experience the knowledge engineer has with expert systems, 
the more accurate an estimate of the scope of the project 
and, hence, the more accurate a schedule for the expert 
system development effort (Gilstrap). 

Implementation--It may be necessary to change the 
implementation language to satisfy the system's performance 
and operational requirements. However, the use of 
artificial intelligence tools is advantageous in the 
beginning of the project as a design environment for expert 
systems. Although such an approach appears to involve more 

3-41 

9 0 6  



effort, it results in the creation of a better product that 
does not require immediate modification upon delivery 
(Botten, Bush, Critchfield, Gilstrap, Jackson, Lindenmayer, 
and Miller). 

Verification and Validation--All interviewees acknowledge 
the difficulty of thoroughly verifying and validating an 
expert system. No standard approach currently exists, even 
though the need for one is universally recognized. Das 
created scenarios that identify and test the system's 
behavior in different situations. Bush and Critchfield 
created a "system behavior" matrix to help generate test 
cases for major functional combinations. All agree that the 
expert is an important participant in the verification and 
validation of an expert system. 

Maintenance--All interviewees state that it is (or will be) 
difficult to maintain an expert system. The interviewees 
suggest that the following should make maintenance easier: 

0 Use a structured approach to construct the 
knowledge base by 

- Separating rapidly changing knowledge 
(data-like knowledge) from slower changing 
knowledge (rules-like knowledge) 

- Separating the inference engine from the 
knowledge domain 

- Separating the knowledge base by function, 
i.e., incorporate modularity into the 

. knowledge base 

- Maintaining a rule dependency chart (Das and 

L i nde nmaye r ) 

0 Create knowledge acquisition tools that help 
generate rules in a standard style and format 
(Knoblock and Weiss). 

3 - 4 2  

906 



0 First implement changes using an artificial 
intelligence tool: then, after clarifying a11 
concepts, incorporate the changes into the 
operational system (Gilstrap and Botten). 

3 . 4  SUMMARY 

The results of the analysis show that no formal, documented, 
comprehensive methodology exists for the development of an 
expert system, with the exception of Martin's ESCIE. The 
lack of a formal methodology contributes to the current 
state of affairs, wherein each development project must 
essentially learn from its mistakes. The need for a formal 
methodology is obvious. 

The analysis also r-evealed enough similarities between the 
activities in traditional software development and those in 
expert system development to make it feasible--and 
practical--to develop an expert system development 
methodology within the framework of the waterfall model. 
The movement of the waterfall model toward a prototyping 
environment further supports this contention. 
Accommodations must be made for several important aspects of 
expert system development as follows: 

0 Allow iteration within a phase and across phases 

0 Permit requirements to be derived in parallel with 
system development 

0 Redefine the success criteria for intermediate 
prototypes 

0 Increase the scope of user involvement 

0 Identify a means of measuring progress (This is 
particularly difficult because no objective measure 
yet exists to measure progress in a prototyping 
environment.) 

3-43 

9 0 6  



a Broaden lines of communication between the 
development team and the users: frequent 
communication is critical between the expert and 
knowledge engineer and among all project members 
during the prototyping effort 

0 Develop new control mechanisms, especially in the 
prototyping environment 

The factors presented in Sections 3.1.1 through 3.1.6 
indicate that, at least in the area of knowledge 
acquisition, which is similar to requirements analysis, new 
approaches are necessary. The traditional model also 
imposes a degree of formality that appears inappropriate to 
an expert system development effort. This is particularly 
true in the prototyping area. 

3-44 

906 



SECTION 4 - REQUIREMENTS OF AN EXPERT SYSTEM 
DEVELOPMENT METHODOLOGY 

After conducting the research activities described in 
Section 2 and the analysis described in Section 3 ,  task 
members arrived at a number of requirements that any expert 
system methodology must satisfy. These requirements do not 
constitute a distinct methodology; rather, they represent 
key elements that such a methodology must contain. Several 
different methodologies could be derived from these . 

requirements. The list of requirements presented here can 
be considered a bridge between the research effort discussed 
in this document and an outline for an expert system 
development methodology. 

Two major assumptions were made. First, the waterfall 
method is a viable first step for development of an expert 
system methodology. Second, expert system development 
comprises a mix of expert system specific activities and 
traditional software development activities. 

As shown in Section 3 ,  there are numerous similarities 
between activities carried out in the development of an 
expert system and those of a traditional software project. 
Because the waterfall method has proven reasonably 
successful (with the minor problems discussed in Section 
3.1.6), there is no reason to abandon the traditional 
concepts for an expert system methodology. The basic 
concepts of the waterfall method should be modified as 

needed to accommodate expert system development activities, 
such as prototyping. 

An expert system consists of software specific to the 
knowledge base and software that interfaces with the user 
and other software elements. An expert system can be a part 
of a larger software system, especially in a typical space 

4-1 
906 



application, or a standalone system. The interfaces are 
usually written in standard procedural or fourth-generation 
language, whereas the knowledge base is often written using 
an expert system shell or other expert system tool. 

The requirements that follow are not given in any specific 
order of importance. The emphasis is on the concepts rather 
than on the phasing of an activity. An attempt to order 
this list within the framework of management, technical, and 
other issues did not prove to be practical; the requirements 
too often crossed such artificial boundaries. 

An expert system development methodology must do the 
following: 

1. Include a special section on the definition of 
terms. There is a lack of agreement on meanings of commonly 
used terms or. expressions within software engineering. This 
is particularly true of expert systems. For example, some 
articles distinguish between a life cycle methodology and a 

prototyping methodology: others view prototyping as a part 
of the life cycle. In addition, the relationships among 
terms must be clear. 

2 .  Establish guidelines that allow evaluation of a 
problem for its applicability to an expert system solution, 

During the feasibility study of a new software development 
effort, certain parts of the entire system (or the whole 
system itself) should be analyzed for possible 
implementation as an expert system(s). 

3 .  Include the expert as an active member of the 
development team, with responsibilities and commitment 
clearly stated at the beginning of the effort. Initially, 
the expert provides knowledge to the knowledge engineer 
through a series of interviews. As the development effort 
progresses, the role of the expert shifts from a knowledge 
source to a knowledge base evaluator. As each prototype is 

4-2 

9 0 6  



demonstrated, the expert must evaluate the correctness of 
the knowledge in the knowledge base and the correctness of 
the solutions provided by the expert system. As a team 
member, the expert must have duties and responsibilities 
defined by management (like all other team members) and must 
perform them willingly. 

4 .  Define the role of each member of the development 
team. Each member needs to understand his or her duties and 
responsibilities exactly. Furthermore, each team member 
needs to be aware of the lines of communication both within 
and external to the project. Each team member also needs to 
be aware of the tools available for completing a job. 

5 .  Involve the users with the evaluation of the expert 
system-. The users can range from scientists to operations 
and maintenance personnel. Each must evaluate the prototype 
in terms of his or her particular use of the expert system. 
For example, the scientist would be concerned with ease of 
use and correctness of a solution; operations personnel 
would be interested in the ease of maintenance, as well as  

the ease of operation. As with the expert, the users must 
be prepared to evaluate the system carefully and 
objectively. This entails committing time and resources to 
understand the demonstration materials and the results of 
the demonstrations and to document comments and concerns. 
This evaluation will not only result in a system more 
satisfactory to the user, but it will a150 lessen necessary 
user training time upon delivery. 

6 .  Require the assignment of a knowledge engineer wirh 
well-defined responsibilities and duties. The goal of the 
knowledge engineer is to build a system that satisfies both 
the expert and the user. Thus, the knowledge engineer must 
acquire as much knowledge as possible about the problem at 
hand, recognizing again that this requires much time and 

4 - 3  

9 0 6  



effort. Numerous interviews with the expert are necessary, 
both to obtain information and to ensure that the knowledge 
engineer understands what is being said. As in the case of 
the development itself, knowledge acquisition is an 
iterative process that occurs in parallel with the 
development of the expert system software. The knowledge 
engineer must demonstrate the prototype, with special 
emphasis on closing action items from any previous 
demonstration. He or she must consider a negative result a 
useful knowledge acquisition rather than a personal failure; 
even negative results clarify the requirements. 

7. Allow the definition of requirements and 
development of the expert system software in parallel. This 
is accomplished through prototyping techniques. A typical 
iteration of one prototype may include requirements 
definition/refinement (knowledge acquisition), design, 
coding, demonstration, and evaluation from experts and 
users. Each prototype brings the system closer to the 
completion of requirements specifications and proof of 
concept. This includes the realization that a selected 
approach may need to be abandoned and the development effort 
begun again. In practice, the work will not have been 
wasted because there is a better understanding of 
requirements, the relationship between the expert and 
knowledge engineer has been established, and some aspects of 
the system may be salvageable. 

8 .  Provide for frequent prototype demonstrations. 
This fosters a close working relationship between the 
development team (including the expert) and the users, 
uniting them in a common goal. The expert and user will 
have the opportunity t o  evaluate the correctness of 
cequirements with regard to interpretation and 
implementation. The knowledge engineers will have the 

4-4 

9 0 6  



advantage of frequent feedback from the expert and the 
users: therefore, they will not waste extensive development 
time through misinterpretation and will be afforded the 
opportunity to redesign and reimplement if a better approach 
is discovered. Managers are assured that progress is being 
made because the expert, the knowledge engtneer, and the 
users are converging on the definition of requirements and 
possible knowledge base design. The result of the 
prototyping effort will be a better, usable system accepted 
both by the expert and users. 

9 .  Provide for control that allows rapid changes but 
restricts free-lancing. A way of tracing a system's 
evolution must be established. The entries to a 
traceability log must reflect all modifications resulting 
from new knowledge acquisition (addition, deletion, or 
changes in requirements), improved understanding of 
requirements, or a better implementation. Updating such a 
traceability log mus.t be mandatory but straightforward and 
fairly simple. Furthermore, this log documents decisions 
made regarding the expert system, including justifications 
for the decisions. The importance level of the decisions 
must be established at the beginning of the project. 

Another control log should be created at the initial 
prototype demonstration and must be reviewed and maintained 
during the subsequent prototype demonstrations. This log 
records approval and/or changes to the demonstrated 
prototype. 

10. Contain a set of recommendations on how to sched.ule 
expert system development and determine when to finalize the 
requirements and terminate the prototyping process. This 
scheduling is expected to become increasingly accurate as 
data from traceability logs and other technical 

4 - 5  

906 



documentation from previously developed systems become 
available for study and analysis. Management on both sides 
of the project--customer and developer--must agree to an 
initial estimate of this date at the beginning of the 
project. 

Prototype demonstrations allow frequent reevaluation and 
calibration of this date according to the actual development 
process, giving all parties involved in the project a better 
feel for whether the original cut-off date is feasible or 
should be replanned. 

11. Provide an objective means of reporting progress. 
During expert system development, the requirements are 
defined in parallel with the system design and coding, and 
progress cannot be measured in sequential milestones. 
Although such terms as progress, productivity, rate of 
progress, and completion of a schedule milestone still 
exist, they may have to be redefined to allow for the 
iterative nature of expert system development. For example, 
after a prototype demonstration, considerable progress may 
be made despite a decision to abandon a current expect 
system development tool and use a new one. 

12. Establish a set of baseline documents. The 

document names, purpose, scope, and intended readers can be 
taken from the traditional software development methodology 
(e.g., functional requirements, requirement specifications, 
operational concepts, user manual, etc.). The first draft 
of these documents outlining the high-level requirements can 
be created at the early phases of expert system 
development. However, they cannot and need not be formally 
revised and redelivered to keep up with the rate of 
prototype demonstrations. On the other hand, the updating 
of the documentation cannot wait until the end of the expert 

4 - 6  

906 



system development. The solution may lie in the middle: 
produce revised drafts of the documents reflecting a current 
"snap shot" state of the requirements definitions and the 
system design, to be delivered every N demonstrations (or 
every N months), with a final version delivered at the end 
of the system development.' 

In addition to the traditional set of documents, it may be 
useful to deliver final versions of the system's 
traceability and control logs for archival purposes. 

13. Provide guidelines for scheduling and budgeting 
that allow for contingency planning (e.g., when a current 
prototype approach is abandoned). 

14. Establish a set of standards and procedures 
encompassing knowledge acquisition and programming 
techniques during the actual creation of an expert system, 
stressing modularity and a structured approach. T'hese 
standards and procedures must be independent of expert 
system tools and shells. 

e 
15. Allocate an active role for quality assurance 

during expert system development. Quality assurance 
functions may differ from those in traditional software 
development. The quality assurance officer will still have 
to develop standards and procedures for expert system 
development: however, procedures to ensure that they are 
being followed (e.g., inspections) will differ. Frequent 
prototyping will require an additional balance between 
routine checking and minimum bureaucracy to ensure that the 
expert system development process is not. stalled. A new 
function (which may require the involvement of a system 
engineer) is ensuring that the development goes in the right 
direction (i.e., the next prototype solves action items from 
the previous prototype). Thus, quality assurance must 
participate in every prototype demonstration. A derivative 

4 - 7  

9 0 6  



of this function is the ability to detect lack of progress 
and to take the appropriate corrective actions. The 
methodology must provide some guidelines to allow quality 
assurance to judge whether or not requirements and system 
development are converging. 

16. Establish open communication throughout the 
project. Management needs to be well informed of progress 
with the prototypes. The users need to provide feedback on 
each prototype in a timely fashion. Developers need to talk 
frequently with each other and with the knowledge engineer. 
Developers can demonstrate the prototype informally to their 
peers or to management outside the regularly scheduled 
prototype demonstration. The expert needs to meet 
frequentl-y with the knowledge engineer. 

4-8 

9 0 6  



SECTION 5 - SUMMARY AND FUTURE GOALS 

In assessing the results of the expert system methodology 
study, the following conclusions were made: 

1. Expert system development in industry requires a 
comprehensive methodology that covers management as well as 
technical aspects at every phase of an expert system's life 
cycle. This is also true for expert systems for space 
applications. 

2. No formal methodology currently exists that can be 
easily, in a straightforward manner, applied in its entirety 
to expert system development. The waterfall method is used 
for traditional software development and is widely accepted 
by managerial and technical participants in the development 
effort. Being document driven, however, this method is not 
highly flexible, and is therefore- unsuitable for expert. 
system development without modification. 

3 .  Expert systems, although a special class of 
software with an expert domain that is very well defined but 
for which requirements cannot be fully expressed 
algorithmically, are nevertheless software programs. 
Therefore some aspects of the waterfall method can be 
applied to the development of an expert system. The 
prototyping nature of expert system development, combined 
within the necessity to work closely with experts, requires 
new methods and approaches. 

4 .  Future work on defining a methodology for expert 
systems will involve careful analysis of the waterfall 
method to identify and extract those approaches that are 
applicable to expert system development requirements. The 
advantage of t h i s  approach is avoiding reinventing the wheel 
by making full use of proven approaches and methods. 

5-1 

906 



The risk is that the expert system development needs may be 
inappropriately forced into existing standards and 
procedures. 

5 .  New standards and procedures will be needed, 
specifically to address issues of the expert system Life 
cycle (e.g., knowledge acquisition) and the requirements of 
interfacing traditional and expert system software. 

6 .  Management needs to modify its approach to the 
control of a software development project. The prototyping 
technique must not be burdened with inappropriate controls 
that hamper the development effort. On the other hand, the 
developers must recognize that prototyping is not a license 
to disregard proven, useful development practices and 
controls. 

7 .  Documentation is important throughout the 
development of the expert system. It must be kept current 
and must contain reasons why certain actions or designs were 
implemented rather than others. Early in the development 
cycle, document structure may be informal to facilitate 
currency: later, it must be formalized and documents must be 
placed under strict configuration control. 

The next step in the expert system development methodology 
is to derive a methodology that satisfies the requirements 
stated in the previous section. It is recommended that the 
traditional software development approach be used as the 
starting point and modified where necessary to accommodate 
the unique expert system development environment. After the 
expert system development methodology is reasonably well . 

established, suitable projects need to apply all or parts of 
the methodology. The more controversial aspects of the 
methodology may be implemented separately for refinement 
before the entire methodology is applied to a single project. 

5 - 2  

9 0 6  



---___I--- APPENDIX A - BIBLIOGR24JPHY WITH SYNOPSES 

This appendix contains the bibliography and synopses of the 
Literature that have been reviewed during the expert system 
methodology study. 

Author: Not specified 

Title: Untitled 

Source: Presentation by personnel from Inference 
I IlCO r p o  K a t ed 

Synopsis: A presentation on the role of knowledge 
engineering, the expert system development 
process, and some heuristics for knowledge 
engineers. 

Author: Not specified 

Title: Interview: Peter Hart Talks about Expert Systems 

Date: 1986 

J ourna 1 : IEEE Expert, Vol. 1, No. 1, p p .  96-99 

Synopsis: Mr. Hart suggests that an expert system should 
first be developed as a prototype in LISP in 
order to allow flexibility in the development of 
the system and to increase the productivity. 
After the prototype has been completed, the 
system can be rewritten in whatever Language the 
developer chooses. 

Author: Not specified 

Title: MOdDSD Systems Management Policy 

Date: 1986 

Source: 'NASA/GSFC, Document MDOD-8YMP/O485 

Synopsis: T h i s  document defines the systems management 
pol.icy appLicable to all systems developed 
within the Mission Operations and Data Systems 
Directorate (MO&DSD) at the Goddard Space Flight 
CeIlteK. 

A- 1 
906 



Author: Not specified 

Ti. t 1 e : MOCjrDSD 2~f:tware Development Policy 

Date: 1986 

Source : NASA/GSFC, Document MODSD-8YDP/0186 

Synopsis: This document def iries the sof tware development 
policy applicable to all systems developed 
withi.n the Mission Operations and Data Systems 
Directorate at the Goddard Space Flight Center. 

Author: Agresti, W. W. 

Title: The Conventional Software Life-cycle Model: Its 
Evolution and Assumptions 

Date: 1986 

Source: New Paradigms for Software Development, 
Washington, DC: IEEE Computer Society Press 

Synopsis: This tutorial includes 21 articles that discurjs 
the conventional software life-cycle model, its 
limitations, and possible ways to improve it. 
The latter include prototyping, operational 
specification, and transformational 
imp 1 erne tit at ion. 

IT 
Aut ho c s : Allen, B. P. and Iioltzman, P. L. 

Title: Simplifying the Construction of Domain-Specif ic 
Automatic 

P r o g r a mm i ng 
Systems : The NASA Automated Software Development 

Workstation Project 

Date: August 1987 

Source: Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, TX 

Synopsis: The authors describe the Automated Software 
Development Workstation. The goal of the 
project is t o  apply the concept of domain- 
specific automatic programming systems to 

A-2 
906 



applications at the Lyndon B. Johnson Space 
Center. Bottlenecks observed in phase I of the 
project are described. The authors propose to 
solve these through increased automation of the 
acquisition of programming knowledge and use of 
an object-oriented development methodology at 
all stages of design. 

Authors : Bailey, P. A. and Doehr, B. B. 

Title: Knowledge Acquisition and Rapid Prototyping of 
an Expert 

System: Dealing with "Real World" Problems 

Date: November 13-14, 1986 

Source: Conference on Artificial Intelligence for Space 
Applications, Huntsville, AL 

Synopsis: The authors detail their experience with the 
development of an expert system. In particular, 
they provide an extensive discussion of the 
lessons learned during the development and 
suggestions for expert system development. 

Author : Balzer, R. 

Title: A 15 Year Perspective on Automatic Programming 

Date: 1985 

J ou r Iia 1 : IEEE Transactions on Software Engineering, Vol. 
SE-11, NO. 11, pp. 1257-1268 

Synopsis: The author discusses the standard waterfall 
method of software development, points out two 
fundamental flaws that make maintenance 
difficult, and reviews his efforts taken to 
alleviate the maintenance problem via automatic 
programming. The bulk of the effort is in the 
development of a specification language. 
Software maintenance is performed by modifying 
the specif icatiori and reimplementing 
automatically. 

A- 3 

906 



Aut hor s : 

Title: 

Date: 

Journal : 

Synopsis: 

Author: 

Title: 

Date: 

Journa 1 : 

Synopsis: 

Authors: 

Title: 

Date: 

Jour na 1 : 

Synops is : 

Balzer, R., Cheatham, T. E., and Green, C. 

Software Technology in the 1990's: Using a New 
Paradigm 

1983 

IEEE Computer, Vol. 16, No. 11, 39-45 

The authors discuss automatic programming and 
its advantages during the software life cycle. 
Less errors will occur since the specification 
is translated directly into code and testing 
will become considerably easier. 

Bobrow, D. G. 

If Prolog Is The Answer, What is the Question or 
What it Takes t o  Support the AS Programming 
Pa rad igms 

1985 

IEEE Transactions on Software Engineering, . 

Vol. S E - 1 1 ,  NO. 11, p- 1401 

The author suggests that a single paradigm is 
not the solution t o  knowledge programming. 
Rather, any programming paradigm should be 
integrated with others into a flexible, 
user-friendly computing enviLnment. 

Bobrow, D. G . ,  Mittal, S., and S t e f i k ,  M. J. 

Expert Systems: Perils and Promise 

1986 

Communications of the ACM, Vol. 29, No. 9, 
pp. 880-894 

The paper reviews three successful expert 
systems (XCON, Pride, and Dipmeter Advisor), 
provides guidelines f o r  choosing problems 
suitable for an expert system, and discusses the 
stages of development for an expert system. 

A-4 
906 



Authors : Bochsler, D. C. and Goodwin, M. A. 

Title: A Software Engineering Approach to Expert System 
Design and Verification 

Date: November 13-14, 1986 

Source: Conference on Artificial Intelligence for Space 
Applications, Huntsville, AL, p. 4 7  

Synopsis: This paper presents the methodology used to 
develop RENEX at the Johnson Space Center. The 
methodology is molded into that of the standard 
structured approach. Verification methods are 
detailed by outlining tests at each step of the 
verification process. 

Author: Boehm, Barry W. 

Title: Software Engineerinq Economics 

Date: 1981 

Publisher: Englewood Cliffs, NJ: Prentice-Hall, Inc. 

Synopsis: This text represents the standard reference for 
software engineering economics. It is divided 
into three major parts: an overview of the 
software life cycle, the fundamentals of 
software engineering economics, and the art of 
software cost estimation. The book includes a 
detailed discussion of the constructive cost 
model (COCOMO), a model frequently used for 
estimating and projecting costs for a software 
development project. 

Authors : Bollinger, T, Lightner, E, Laverty, J ,  
Ambrose, E. 

Title: The Load Shedding Advisor: An Example of a 
Crisis-Response Expert System 

Date: May 1987 

Source: Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics. 

Synopsis: The authors discuss a prototype system that can 
be used to host a load shedding advisor, i. e., 

A- 5 
906 



a system which would monitor major physical 
environment parameters in a computer facility 
and recommend appropriate operator responses 
whenever a serious condition was detected. The 
expert system is a hybrid that combines 
procedural, entity-relationship, and rule-based 
methods. The authors discuss the latter in 
detail and point out the advantages of this 
approach. 

Author: Boose, J. H. 

Title: Rapid Acquisition and Combination of Knowledge 
from Multiple Experts in the Same Domain 

Date: December 11-13, 1985 

Source: Second Conference on Artificial Intelligence 
Applications, Miami Beach, pp. 461-466 

Synopsis: The author describes a method for combining 
expertise from many experts in a single domain 
into a single expert system. Rating grids are 
used to obtain expertise. 'These grids are 
compared. Differences are readily apparent, and 
the experts can negotiate resolution of 
differences. The end user, by examining the 
differences between consensus and dissenting 
opinions, can readily see the range of 
acceptable solutions. 

5 

Authors : Brauer, D., Roach, P., Frank, M.. and 
Knackstedt, R. 

Title: Ada and Knowledge-Based Systems: A Prototype 
Combining the Best of Both Worlds 

Date: October 22-24, 1986 

Source : Expert systems in Government Symposium, McLean, 
VA, pp. 198-202 

Synopsis: The authors discuss the development of the 
Knowledge-Based Maintenance Expert System 
(KNOMES). They state that by using Ada as the 
fundamental structure, they were able to obtain 
a well-structured, maintainable program and by 
retaining an artificial intelligence/knowledge- 

A- 6 
906 



based language component, they were able to 
capture the knowledge needed to solve ill- 
structured, dynamic, and/or nonalgorithmic 
problems. 

Author: Brooks Jr.. F. P. 

Title: No Silver Bullets: Essence and Accidents of 
Software Engineering 

Date: 1987 

Journal : computer, Vol. 20, No. 4, pp. 10-19 

Synopsis: The author looks at the future for software 
engineering, seeking new breakthroughs for an 
order of magnitude improvement in productivity, 
reliability, and simplicity. Among technologies 
investigated are Ada, object-oriented 
programming, artificial intelligence, expert 
systems, automatic programming, graphical 
programming, programming verification, 
environments and tools, and workstations. Two 
of the more promising approaches are incremental 
development and the use of rapid prorotyping for 
requirements refinement. 

Author: Brown, J. S. 

c Title: The Low Road, the Middle Road, and the High Road 

Date: 1984 

Source : The AI Business, eds. P. H. Winston, and K. A. 
Prendergast, pp. 81-90 

Publisher: London, England: MIT Press 

Synopsis: The author recommends that AI research "travel 
the low, medium, and high roads 
simultaneously." The low road puts the 
intelligence into the programming environment. 
The middle road encodes experiential knowledge 
that an expert has accumulated over a period of 
time or the middle road combines intelligent 
interfaces with a powerful domain-specific 
tool. The high road codifies the deep 
conceptual models. 

A-7 
906 



Author: Brule, J. F. 

Title: Expert Systems: Applications 

Date: 1986 

Source : - Artificial Intelliqence: Theory, Logic and 
ADD 1 i ca t ion 

Publisher: Blue Ridge Summit, PA: Tab Books, Inc. 

Synopsis: This chapter discusses the advantages and 
disadvantages of expert system shells, how to 
develop an expert system (in general terms), 
sources of information, and development stages. 

Authors : Buchanan, E., Barstow, D., Bechtel, R., Bennett, 
J., Coancey, W., Kulikowski, C., Mitchell, T., 
and Waterman, D. A. 

Title: Constructing an Expert System 

Date: 1983 

Source: Buildinq Expert Systems, eds. F. Hayes-Roth, 
D. A. Waterman, and D. E. Lenat, pp. 127-167 

Publisher: Reading, MA: Addison-Wesley 

Synopsis: An overview on how to construct an expert 
system. The authors discuss the evolutionary 
character of an expert system, identify the 
major steps in knowledge acquisition, and 
provide guidelines for constructing an expert 
system. 

Author: Castore, G. 

Title: A Formal Approach to Validation and Verification 
of Knowledge-Based Control Systems 

Date: August 1987 

Source: Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, T X  

Synopsis: The author describes an approach to the 
verification and validation of knowledge-based 

A-0 
906 



control systems. His approach is to formulate a 
structural model for the knowledge-based control 
system. This model represents a 
nondeterministic automaton. A logic is then 
developed for asserting and reasoning about the 
properties of the structures. Specifications 
are interpreted as assertions about the model 
properties. The role of the validation software 
is to prove these assertions. 

Authors : Citrenbaum, R. L. and Geissman, J. R. 

Title: A Practical Cost-Conscious Expert System 
Development Methodology 

Date: April 29 - May 1, 1986 

Source: AI-86: Artificial Intelligence and Advance 
Computer Technology Conference, Long Beach, CA 

Synopsis: The authors present a three step methodology for 
developing an expert system. The steps are 
problem selection, rapid prototype, and 
iterative growth. They also discuss the 
staffing profiles and the procedures to be 
followed by the expert system development team. 

Author : Connell, J. 

Title: Software Rapid Prototyping 

Date: August 27-28, 1987 

Source: Seminar presented in Washington, DC 

Synopsis: The author presents a structured methodology for 
rapid prototyping. He works within the 
framework of the structured techniques of 
Yourdon and DeMarco. The method requires more 
time in the traditional requirements analysis 
phase but gains time in the testing and 
integration phases since a large part of that 
effort had been accomplished earlier. According 
to the author, over the entire life cycle, the 
new method lowers costs. 

A-9 
906 



Authors : Culbert, C., Riley, G., and Savely, R. T. 

Title: Approaches to the Verification of Rule-Based 
Expert Systems 

Date: August 1987 

Source: Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, TX 

Synopsis: The authors describe the verification of expert 
systems. They describe how expert systems ace 
developed, two alternate ways they should be 
developed, and differences in the verification 
and validation of conventional software and 
expert systems. 

Authors : Culbert, C., Riley, G., and Savely, R. T. 

Title: An-Expert System Development Methodology which 
Supports Verification and Validation 

Date: 1987 

Source: Paper submitted to 4th IEEE Conference on 
Artificial Intelligence 

S ynopsis: T 
d 
P 

P 
e 
0 
S 
f 
C 
a 

'he authors present a methodology for the 
evelopment of an expert system. The phases are 
roblem definition, initial prototype, expanded 
rototype, delivery/maintenance. The first 
h a s e  e n d s  w i t h  a r e v i e w  b y  a p a n e l  c o n s i s t i n g  
f expert system developers, domain experts, 
ystem users, and managers with system 
esponsibility. The panel can become the 
onfiguration control board in the fourth phase 
t the conclusion of testing. 

Author: Das, B. K. and Berg, R. A. 

Title: Impact Assessment: A Case Study for Scheduling 
NASA's TDRSS Resources 

Date: October 19-23, 1987 

Source: Proceedings of Third Annual Expert Systems in 
Government Conference, Washington, DC, PP. 
254-259 

A- 10 
906 



Synopsis: The paper outlines the addition of impact 
assessment to an expert system that can be used 
for scheduling spacecraft contacts with the 
Tracking and Data Relay Satellite System 
(TDRSS). The paper presents the problems of 
impact assessment and a method that combines 
model-based reasoning and heuristics used to 
solve the problems. 

Authors : Das, B. K. and Berg, R. A. 

Title: Impact Assessment: Perspective of an Operator 
Assistant for Scheduling NASA's Tracking and 
Data Relay Satellite System 

Date: February 1987 

Source : Third IEEE Conference on Artificial Intelligence 
Applications, Poster Session, Orlando, FL, pp. 
23-27 

Synops is : This paper describes an existing prototype 
system that allows operator's to schedule the 
TDRSS. The system allows the operator to 
reschedule activities in an existing schedule. 
The goal of such a rescheduling is to create 
minimum impact on the current schedule. The 
Network Operator Assistant (NOA) accomplishes 
this goal. 

Authors : Das, B. K. and Berg, R. A. 

Title: Expert System: A Network Operator Assistant 
(NOA 1 

Date: 1987 

Source: Unpublished presentation 

Synopsis: A slide presentation of NOA (cf. B. K. Das and 
R. A. Berg, Impact Assessment: Perspective of 
an Operator Assis,tant for Scheduling NASA's 
TDRSS Resources). This presentation provides a n  
overview of NOA and its current status. 

A-ll 

9 0 6  



Author: DeMarco, T. 

Source: Structured Analysis and System Specification 

Date: 1979 

Publisher: New York: Yourdon, Inc. 

Synopsis: This book is the standard reference for 
conducting structured analysis and system 
specification. It describes how to draw data 
flow diagrams, write data dictionary entries and 
minispecifications. It includes case studies on 
the technique. 

Author: Denning, P. J. 

Title: Towards a Science of Expert Systems 

- Date: 1986 

Journa 1 : IEEE Expert, Vol. 1, No. 2, p p .  80-83 

Synopsis: A short overview of expert systems. The author 
discusses the main components of an expert 
system, deep versus shallow systems, knowledge 
representation methods, and the limitations of 
expert systems. He concludes that "there is no 
reason in principle that, with a different 
methodology, expert systems cannot be as 
reliable as other software." 

Aut hor s : Dias, W. C., Henricks, J. A., and Wong, J. C .  

Title: PLAN-IT: Scheduling Assistant for Solar System 
Exploration 

Date: May 1987 

Source: Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics 

Synopsis: The authors discuss the use of PLAN-IT for 
scheduling activities for the CRAF mission. 
PLAN-IT is a frame-based system written in 
Zetalisp. They developed their system in an 
evolutionary manner, i.e., they started with a 
basic scheduling system, progressed to a 
structured system and then, finally, to an 
expert scheduler. 

A-12 
906 



Author: 

Title: 

Date: 

Source : 

Synopsis : 

Author: 

Title: 

Date: 

Source: 

Synopsis: 

Aut ho r s : 

Title: 

Date: 

Jour na 1 : 

Synopsis: 

Dutilly, R. 

Automation of Spacecraft Control Centers 

May 1987 

Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics 

The author discusses the current status of 
Communications Link Expert Assistance Resource 
(CLEAR). CLEAR is to be used in the control 
center at the Goddard Space Flight Center. The 
author also describes how a series of 
interacting expert systems could be developed to 
almost totally automate the Mission Operations 
Room of the control center. The author provides 
guidelines and desiderata for such an 
interactive system. 

Ebrahimi, M. 

A Structured Approach t o  Expert System Design 

June 2-4, 1987 

Proceedings of the Western Conference on Expert 
Systems, Anaheim, CA, pp. 18-24 

The author presents, in general terms, the 
structured methodology used by Abacus 
Programming Corporation to develop a design for 
expert systems. 

Fikes, R. and Kehler, T. 

The Role of Frame-Based Representation in 
Reasoning 

1985 

.Communications of the ACM, Vol. 28, No. 9, 
pp. 904-920 

The authors describe the features of frame-based 
knowledge representation facilities and 
indicates how they can provide a foundation for 
a variety of knowledge system functions. They 
discuss how frames can contribute to knowledge 

A-13 
906 



system reasoning activities and how frames can 
be used to organize and direct reasoning 
activities. They also discuss the advantages of 
integrating frames and production rules into a 
unified representation facility. One advantage 
of such a facility is that it makes the 
organizational and expressive power of 
object-oriented programming available to domain 
experts who are not programmers. 

Author: Fox, J. M. 

Title: AI'S Contribution to Software Development or 
Expert Systems Are Symptoms 

Date: October 22-24, 1986 

Source: Expert Systems in Government Symposium, McLean, 

Synopsis: 

VA, p p .  424-425 

The author discusses the application of expert 
systems to the various steps of the software 
development 1i.fe cycle from requirements 
analysis through integration and testing. He 
also discusses the applicability to the software 
manager, systems engineering, quality assurance 
and configuration control. Finally, he 
discusses its usage for knowledge-based 
techniques, his rational for increased 
productivity, and software prototyping. 

Authors : Frail, R. P. and Freedman, R. S. 

Title: OPGEN Revisited: Some Methodological 
Observations on the Delivery of Expert Systems 

Date: October 22-24, 1986 

Source: Expert Systems in Government Symposium, McLean, 
VA, p p .  310-317 

Synopsis: After a discussion of OPGEN, the authors provide 
five observations and guidelines associated with 
the delivery of expert systems. The 
observations are: 

1. The delivery of an expert system should 
be considered in the earliest stage of 
development. 

A-14 
906 



2. Production rules are useful for rapidly 
prototyping a small system for the 
purpose of demonstrating feasibility. 

3. Adding rules does not necessarily improve 
an expert system. 

4. If an expert system product has been 
successfully used to solve problems in 
several separate, but similar domains, 
then it may be cost-effective to 
transform that system into a shell. 

5. Is the final deliverable system still an 
expert system? 

Author: Friedland, P. 

Title: Architectures for Knowledge-Based Systems 

Date: 1985 

Journal : Communications of the ACM, Vol. 2 8 ,  No. 9, p. 903 

Synopsis: This is a one page introduction to three 
articles that describe the different ways to 
represent knowledge in an expert system: 
frames, rules, and logic (cf. R. Fikes and T. 
Kehler, 1985, F. Hayes-Roth, 1985, and M. R. 
Genesereth and M. L. Ginsberg, 1985). Friedland 
emphasizes that these are not three competing 
methods, but rather choices available for 
different applications. 

Authors : Gaschnig, J., Klahr, P., Pople, H., Shortliffe, 
E., and Terry, A. 

Title: Evaluation of Expert Systems: Issues and Case 
Studies 

Date: 1983 

Source: Buildinq Expert Systems, eds. F. Hayes-Roth, D. 
A. Waterman, and D. B. Lenat, pp. 241-280 

Publisher: Reading, MA: Addison-Wesley 

A-15 
906 



Synopsis: The authors discuss the need for testing expert 
systems, and when and what to test. They 
provide a checklist of pitfalls that must be 
avoided in the preparation of testing. They also 
provide two case studies: R1 (XCON) and a 
chemical spill problem. (The latter is a 
hypothetical problem used throughout the book.) 

Authors : Genesereth, M. R. and Ginsberg, M. L. 

Title: Logic Programming 

Date: 1985 

Journal: Communications of the ACM, Vol. 28, No. 9, pp. 
933-941 

Synopsis: The authors have written an introduction to 
logic programming and explain concepts in a 
straightforward, understandable manner. They 
describe both advantages and shortcomings of 
logic programming. The authors are optimistic 

dominant programming method for the next 
century. 

. that logic programming is emerging as the 

Author: Gilb, T. 

Title: Evolutionary Delivery versus the "Waterfall 
Model" 

Date: 1985 

Jour na 1 : ACM SIGSOFT Software Engineering Notes, Vol. 10, 
NO. 3, pp. 49-61 

Synopsis: The author proposes the evolutionary delivery as 
a replacement for the standard waterfall model 
of software development. The evolutionary 
delivery method is based on the following 
principles: deliver something to a real 
end-user; measure the added-value to the user: 
and adjust both design and objectives based on 
observations. The article basically describes 
the author's approach to prototyping. 

A-16 
906 



Author: Gladden, G. R. 

Title: Stop the Life-Cycle, I Want to Get Off 

Date: 1 9 8 2  

Jour na 1 : ACM SIGSOFT, SW Engineering Notes, Vol. 7 ,  No. 
2 ,  pp. 3 5 - 3 9  

Synopsis: The author discusses the problems of the 
traditional waterfall model and proposes the 
"Hollywood" approach to software development. 
This approach, which uses rapid prototyping, is 
based on the following three propositions: 1) 
system objectives are more important than system 
requirements; 2 )  a physical object conveys more 
information that a written specification; 3 )  
system objectives plus physical demonstrations 
will result in a successful product. 

Author: Goldberg, A. T. 

Title: Knowledge-based Programming: A Survey of 
Program Design and Construction Techniques 

Date: 1 9 8 6  

Journa 1 : IEEE Transactions on Software Engineering, Vol. 
S E - 1 2 ,  NO. 7 ,  pp. 7 5 2 - 7 6 8  

Synopsis: The author discusses data structure selection 
techniques, procedural representation of logic 
assertions, store-versus-compute tradeoffs, 
finite differencing, loop fusion, and algorithm 
design methods. 

Authors : Goodwin, M. A. and Robertson, C. C. 

Title: Expert System Verification Concerns in an 
Operations Environment 

Date: August 1 9 8 7  

Source: Space Operations Automation and Robotics (SOAR) 
' 8 7  Workshop, Johnson Space Center, Houston, T X  

A-17 
9 0 6  



Synopsis: The authors provide the definition of a verified 
expert system, discuss lessons learned from the 
past for the verification of conventional 
software, and extend these techniques to 
operational expert systems. 

Authors : Green, C. J. R .  and Keyes, M. M. 

Title: Verification and Validation of Expert Systems 

Date: June 2-4, 1987 

Source: Proceedings of the Western Conference on Expert 
Systems, Anaheim, CA, pp. 38-43 

Synopsis: The authors propose a method for the 
verification and validation of expert systems. 
As in conventional software development, the 
verification and validation of expert systems 
will comprise requirements definition, 
verification, test case preparation, test 
execution, and evaluation. Differences between 
the proposed method and conventional 
verification and validation are distinguished.. 

Author: Hancock, B. 

Title: Expert Systems 

Date: 1987 

Journal: DEC Professional, Vol. 6, No. 5, p p .  40-48 

Synopsis: An overview of expert systems that describes 
five approaches to knowledge representation, a 
five-phased approach to expert system 
development, and applications of expert systems. 

Authors : Hartrum, T. C. and Lamont, G. B. 

Title: Development of a Comprehensive Software 
Eng i nee f ing Envi r onment 

Date: August 1987 

Source : Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, T X  

A-18 
906 



Synopsis: The authors describe a software engineering 
environment under development, and partially in 
use, at the Air Force Institute of Technology. 
The goal is to integrate tools and techniques 
across all phases of the DoD 2167 life cycle. 
The central concept to their environment is that 
the data dictionary provides the complete 
description of the entire development effort. 

Author: Hayes , C. 

Title: Using Goal Interactions to Guide Planning 

Date: July 13-17, 1987 

Source: Proceedings of the Sixth National Conference on 
A I ,  Seattle, WA, Vol. 1, pp.  224-228 

synopsis: The author describes the program Machinist. 
This program is an improvement over conventional 
planning programs. Before generating any plans, 
it looks  for cues in the problem specification 
that may indicate potential difficulties or 
conflicting goal interactions. Machinist plans 
around these difficulties, greatly increasing 
the probability of producing a good plan on the 
first try. 

Author: Hayes-Roth, F. 

Title: Rule-Based Systems 

Date: 1985 

Jour na 1 : Communications of the ACM, Vol. 28, No. 9, 
p p .  921-932 

Synopsis: The author presents an overview of rule-based 
systems including the architecture, technoloqy 
evolution, and the strengths and weaknesses for 
such systems. 

Author: Hayes-Roth, F. 

Title: The Knowledge-Based Expert System: A Tutorial 

Date: 1984 

A-19 

906 



Jour na 1 : Computer, Vol. 17, NO. 9 ,  Pp. 11-28 

Synopsis: The author provides an overview of knowledge 
engineering, a discussion of the principal 
scientific and engineering issues in the field, 
the process of building an expert system, the 
role of tools in that process, how expert 
systems perform human-computer interface 
functions, and the frontiers of research and 
development. 

Author: Hull, L. G. 

Title: Managing an Expert System Project 

Date: 1986 

Source: A NASA/GSFC presentation 

Synopsis: Slides from a GSFC presentation. Discusses 
expert system technology, methodology, 
management, and testing. Compares expert system 
and standard software development methodologies. 

Author: Jackson, R. 

Title: Expert Systems Built by the llExpert": An 
Evaluation of OPS5 

Date: May 1987 

Source: Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics 

Synopsis: The author relates his experiences with the 
development of two expert systems using OPS5. 
The author feels that OPS5 was easy to learn and 
allowed easy modification of his two small 
sys tems. 

Authors : Jacob,-R. J. K. and Froscher, J. N. 

Title: Developing a Software Engineering Methodology 
for Knowledge-Based Systems 

Date: 1986 

A-20 
906 



Source : 

Synops is : 

Authors : 

Title: 

Date: 

Source: 

Synopsis: 

Authors: 

Title: 

Date: 

Source: 

Naval Research Laboratory Report 9019 

The authors describe a design methodology 
intended to make a knowledge-based system easier 
to change. The method divides the domain 
knowledge into groups and attempts to limit 
carefully and specify formally the flow of 
information between these groups to localize the 
effects of typical changes within the groups. 

Jenkins, J. P. and Nelson, W. R. 

Expert Systems and Accident Management 

October 22-24, 1986 

Expert Systems in Government Symposium, McLean, 
VA, p p .  88-94 

The authors discuss the Accident Management 
Expert System (AMES) which is developed from a 
deep knowledge base and characterized by success 
paths in the form of a response tree. They also 
describe an experiment in which trained 
operators handled a simulated emergency with and 
without an expert system as an aid; an 
autonomous expert system also handled the same 
emergency. The experiment revealed that the 
unaided operator and the autonomous expert 
system performed equally well while the operator 
using an expert system as an aid took longer to 
handle the emergency and did not perform 
aswell. The authors conclude by describing how 
to develop a deep knowledge base and an expert 
system for the nuclear power plant industry. 

Kass, R. and Finin. T. 

Rules for the Implicit Acquisition of Knowledge 
about the User 

July 13-14, 1987 

Proceedings for the Sixth National Conference on 
AI, Seattle, WA, Vol. 1, p p .  295-300 

A - 2 1  

906 



Synopsis: The authors discuss techniques for acquiring 
knowledge about the user implicit in 
interactions between users and cooperative 
advisory systems. They developed these 
techniques by analyzing transcripts of a large 
number of interactions between advice-seekers 
and a human expert, and have encoded them as a 
set of user model acquisition rules. 

Author: Keller , R. 

Title: Expert System Technology: Development and 
Application 

Date: 1987 

Publisher: Englewood Cliffs, NJ: Yourdon Press 

Synopsis: The author introduces expert systems to managers 
and computer professionals. He incorporates 
these systems into existing environments, i.e., 
he shows how existing software development 
methodologies can be modified to encompass 

. expert systems. Considerable emphasis is placed 
on structured analysis. Detailed examples are 
provided. 

Authors : Kelly, V. E. and Nonnenmann, U. 

Title: Inferring Formal Software Specifications From 
Episodic Descriptions 

Date: July 13-17, 1987 

Source: Proceedings of the Sixth National Conference on 
AI, Seattle, WA, Vol. 1, pp. 127-132 

Synopsis: The authors describe WATSON, a system that 
converts informal, incomplete requirements into 
formal specifications that are consistent, 
complete for a given level, and executable. 

Authors: 

Title: 

Date: 

Kitto, C. M. and Boose, J. H. 

Choosing Knowledge Acquisition Strategies for 
Application Tasks 

June 2-4, 1987 

A-22 
906 



Source: Proceedings of the Western Conference on Expert 
Systems, Anaheim, CA, pp. 9 6 - 1 0 3  

Synopsis: The authors describe a method for providing 
automated assistance to the knowledge engineer 
or domain expert in analyzing the problem 
domain, classifying the problem tasks and 
subtasks, identifying problem-solving methods, 
suggesting knowledge acquisition tools, and 
recommending specific strategies for knowledge 
acquisition within those tools. 

Authors : Kline, P. J. and Dolins, S. B. 

Title: Choosing Architectures for Expert Systems 

Date: 1 9 8 5  

Source: US Department of Commerce, NTIS, Springfield, VA 

SY mopsis: This work documents guidelines that may be use,d 
in designing expert systems. The 4 7  guidelines 
presented were derived from a search of 
published literature and were reviewed by 
experienced expert system builders. In 
addition, the report contains 4 4  problems or 
pitfalls that may be encountered with the 
implementation techniques. 

Authors : Kline, P. J. and Dolins, S. B. 

Title: Problem Features That Influence the  Design of 
Expert Systems 

Date: 1 9 8 6  

Source: AAAI 8 6 :  Fifth National Conference on 
Artificial Intelligence, pp. 9 5 6 - 9 6 2  

are important for the proper use of a wide 
variety of artificial intelligent implementation 
techniques. Knowledge engineers can improve the 
likelihood of obtaining the right design for an 
expert system if they are aware of these problem 
features. 

Synopsis: The authors discuss five general problems that 

A-23 

9 0 6  



Author: Kowalski, R. 

Title: AI and Software Engineering 

Date: 1984 

J ourna 1 : Datamation, Vol. 30, No. 18, pp. 92-102 

Synopsis: The author suggests that software development 
can improve by taking advantage of the new 
technology available to it. Specifically, logic 
programming can be worked within the framework 
of structured analysis and structured design to 
eliminate the need for the implementation phase 
of software development. 

Authors: Kozick Jr., B. and Reynolds, W. 

Title: MPAD MCC Workstation System: ADDAM and EEVE 

Date: August 1987 

Source: Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, TX 

Synopsis: The authors describe the three phases of the  
data workstation development for the automated 
data distribution and management (ADDAM) system 
and the design of an associated monitoring and 
control expert system, the Effective Evaluation 
(EEVE), that is responsible for ensuring data 
integrity. 

Author: Kraft, A. 

Title: XCON: An Expert Configuration System at Digital 
Equipment Corporation 

Date: 1984 

Source: The AI Business, eds. P. H. Winston and 
K, A. Prendergast, pp. 41-49 

Synopsis: The author provides a history and status report 
on XCON. 

A-24 
906 



Authors : Lansky, A. L. and Fogelsong, D. S. 

Title: Localized Representation and Planning Methods 
for Parallel Domains 

Date: July 13-17, 1987 

Source :. Proceedings of the Sixth National Conference on 
AI, Seattle, WA, Vol. 1, p p .  240-245 

Synopsis: The authors present a general method for 
structuring domains that is based on the concept 
of locality. They consider a localized domain 
description to be one that is partitioned into 
regions of activity. They present an overview 
of the Group Element Model (GEM), and discuss 
GEMPLAN, a localized planner based on the GEM 
representation. 

Author: Lantz, K. 

Title: The Prototyping Methodology: Designing Right the 
First Time 

Date: April 7, 1986 

Journal: Computerworld, pp. 69-72 

Synopsis: The author offers the prototyping methodology a s  
an approach to software design. He discusses 
the problems associated with the traditional 
waterfall method and the advantages of 
prototyping. He emphasizes that prototyping is 
not synonymous with hacking but is a viable 
method for producing a good product in less time 
than required by the traditional method. 

Author: Leinweber, D. 

Title: Expert Systems in Space 

Date: 1987 

Journal: IEEE Expert, Vol. 2, No. 1, pp. 26-36 

A - 2 5  

906 



Synopsis: In this article the author discusses the 
potential role of expert systems as monitors and 
real-time controllers of space platforms. He 
also discusses the use of PICON (process 
intelligent control), an expert system tool 
specifically designed to build real-time systems. 

Authors : Lindenmayer, K., Vick, S., and Rosenthal, D. 

Title: Maintaining an Expert System for the Hubble 
Space Telescope Ground Support 

Date: May 13-14, 1987 

Source: Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics 

Synopsis: This paper describes maintenance issues 
associated with the coupling of rules within a 
rule-based system, Transformation, and offers a 
method for partitioning a rule base so that the 
amount of knowledge needed to modify the rule 
base is minimized. 

Authors : Lines-Browning, K. M. and Stone, J. L. 

Title: An Expert System That Performs A Satellite 
Stationkeeping Maneuver 

Date: May 1987 

Source: Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics 

Synopsis: The authors discuss the prototype Expert System 
for Satellite Orbit Control (ESSOC). In 
addition to the details of ESSOC, they discuss 
their development methodology (rapid 
prototyping) and testing philosophy. 

Aut ho rs : Lubars, M. D. and Harandi, M. T. 

Title: Intelligent Support for Software Specification 
and Design 

Date: 1986 

A-26 
906 



Jour na 1 : IEEE Expert, Vol. 1, No. 4 ,  pp. 33-41 

Synopsis: The authors discuss how structured techniques 
can be combined with Intelligent Design Aid 
(IDeA) to develop software. IDEA is an 
environment for supporting high-level software 
specification and design. In addition, analysis 
and implementation are conducted in parallel. 

Author: Martin. N. 

Title: The Management of Expert System Development 

Date: October 1987 

Source: Tutorial presented at TEEE Expert Systems in 
Government Conference, Washington, DC 

Synopsis: Nancy Martin provides a description of her 
Expert System Controlled Iterative Enhancement 
(ESCIE). She includes in this tutorial the cost 
and schedule drivers of an expert system, the 
expert system development team, project 
planning, and acceptance-criteria for an expert 
system. 

Author: Medeiros, E. 

Title: Steps to a New Methodoloqy 

Date: 1987 

Source: Unpublished manuscript 

Synopsis: A suggested approach to the development of an 
expert system within the framework of structured 
analysis and design. 

Author: Myers, W. 

Title: Introduction to Expert Systems 

Date: 1986 

Journal: IEEE Expert, VOl. 1, NO. 2 ,  pp- 100-109 

A-27 
906 



SY 'nopsis: The author describes the fundamentals of expert 
systems, the languages and hardware used in 
artificial intelligence, and software 
development tools. He provides a description of 
software development tools for large machines as 
well as for personal computers. 

Authors : Narayanaswamy, K. and Scacchi, W. 

Title: Maintaining Configurations of Evolving Software 
Sys t ems 

Date: 1987 

Jour na 1 : IEEE Transactions on Software Engineering, 
Vol. SE-13, NO. 3, pp- 324-334 

Synopsis: The authors discuss an approach to maintaining 
the configuration of evolving software systems. 
They propose that software be structured into 
module families and suggest the use of NuMIL t o  
describe software system configuration and use 
of a pro.totype environment they developed to 
maintai.n so€tware system configuration. 

Authors : Nguyen, T. A., Perkins, W. A., Laffey, T. J., 
and Pecora, D. 

Title: Knowledge Base Verification 

Date: 1987 

Journal: AI Magazine, Vol. 8 ,  No. 2 ,  pp. 69-75 

Synopsis: The authors describe CHECK, a computer program, 
that implements an algorithm to verify the 
consistency and completeness of knowledge bases 
for the Lockheed expert system shell. 

Author: O'Bannon, R .  M. 

Title: An Intelligent Aid to Assist Knowledge Engineers 
with Interviewing Experts 

Date: June 2-4, 1987 

A-28 
906 



Source: Proceedings of the Western Conference on Expert 
Systems, Anaheim, CA, pp. 31-36 

Synopsis: The author describes a program that is an 
intelligent, interactive aid designed to assist 
knowledge engineers with eliciting, recording, 
and analyzing the responses of an expert. 

Authors : O'Keefe, R. M., Balci, O . ,  and Smith, E. P. 

Title: Validating Expert System Performance 

Date: 1987 

Journa 1 : IEEE Expert, Vol. 2, NO. 4 ,  pp- 81-90 

Synopsis: The authors discuss the importance of validation 
and evaluation in the research and development 
of expert systems and methods for formal 
validation of expert systems. 

Author : Partridge, D. 

Title: Engineering Artificial Intelligence Software 

Date: 1986 

Journal: Artificial Intelligence Review, Vol. 1, pp. 27-41 

Synopsis: The author discusses the need for a methodology 
f o r  AI program development, the current 
differences in how AI and conventional software 
programs are developed, and the restrictions of 
current methodologies that prevent AI from 
reaching its full potential. The author does 
advocate the use of incremental development but 
warns against the tendency towards hacking. 
Judicious use of incremental development is 
requi r ed . 

Author: Patrick, M. 

Title: Surprise Control 

Date: November 16, 1987 

Journal: Computerworld, Vol. 21, pp. 93-98 

A-29 
90 6 



Synopsis: The author discusses the importance of including 
the end user in the.testing process and of 
developing software in an iterative life cycle. 
He. also stresses the importance of developing 
test plans in parallel with the corresponding 
development products. 

Author: Prerau, D. S. 

Title: Knowledge Acquisition in the Development of a 
Large Expert System 

Date: 1 9 8 7  

J ourna 1 : AI Magazine, Vol. 8 ,  No. 2 ,  p p .  4 3 - 5 1  

Synopsis: The author discusses over 3 0  points on knowledge 
acquisition that were found to be important 
during the development of the Central Office 
Maintenance Printout Analysis and Suggestion 
System (COMPASS). The guidelines cover 
selecting an expert and an appropriate domain 
for the expert system, getting started in 
knowledge acquisition, documenting the 
knowledge, and actually acquiring and recording 
the knowledge. 

Author: Ram, A. 

Title: AQUA: Asking Questions and Understanding Answers 

Date: July 1 3 - 1 7 ,  1 9 8 7  

Source: Proceedings of the Sixth National Conference on 
AI, Seattle, WA, Vol. 1, pp. 3 1 2 - 3 1 6  

Synopsis: The author presents an understanding algorithm 
based on the theory that readers ask questions 
as they read. The algorithm is a three-step 
process: read, explain, and generalize. The 
author has implemented a computer program, AQUA, 
that embodies his theory of questions and 
under s t and ing . 

Authors: Ramamoorthy, C., Prakash, A., Tsai, W., Usuda, Y. 

Title: Software Engineering: Problems and Perspectives 

Date: 1 9 8 4  

9 0 6  

A-30  



Jour na 1 : Computer, Vol. 17, No. 10, pp. 191-209 

Synopsis: The authors investigate various subjects of 
software engineering by reviewing their 
activities, their importance, and new directions 
in software engineering. The subjects cover 
all aspects of the traditional life cycle as 
well as metrics, cost estimation, rapid 
prototyping, and quality assurance. 

Authors : Richardson, K. and Wong, C. 

Title: Knowledge Based System Verification and 
Validation as Related to Automation of Space 
Station Subsystems: Rationale for a Knowledge 
Based System Life Cycle 

Date: November 2-3, 1987 

Source: Proceedings of the Third Conference on 
Artificial Intelligence for Space Applications, 
NASA Conference Publication 2492, Huntsville, A L  

Synopsis: The authors present a life cycle that is to be 
used for knowledge-based systems. It is designed 
to solve some problems of the verification and 
validation of such systems. The life cycle 
consists of the following phases: requirements, 
prototype, knowledge-based system build, test, 
and delivery and monitor. 

Author: Ringland, G .  

Title: Software Engineering in a Development Group 

Date: 1 9 8 4  

Journa 1 : Software-Practice and Experience, Vol. 14, No. 
6, pp. 533-559 

Synopsis: The author discusses his experience in managing 
several small software projects. He provides 
productivity data for each of the projects and 
compares them to those predicted by Boehm's 
algorithm. He discusses productivity relative 
t o  the reuse of software, maintenance and 
enhancement, and documentation. 

A-31: 
906 



Authors : Robinson, J. A. and Satterlee, A. A. 

Title: A n  In-Service Expert System for Configuring 
Thrusters on Orbiting Spacecraft 

Date: June 2 - 4 ,  1 9 8 7  

Source: Proceedings of the Western Conference on Expert 
Systems, Anaheim, CA, pp.  1 1 2 - 1 1 7  

Synopsis: The authors describe a program that is an 
intelligent, interactive aid designed to assist 
knowledge engineers with the eliciting, 
recording, and analyzing the responses of an 
expert . 

Author: Rolston, D. W. 

Title: An Expert System for Reducing Software 
Maintenance Costs 

Date: October 2 2 - 2 4 ,  1 9 8 6  

Source: Expert Systems in Government Symposium, McLean, 
V A ,  p p .  3 9 6 - 4 0 6  

Synopsis: The author describes Problem Resolution System 
(PRESS), an expert system that is designed to 
reduce software maintenance costs by analyzing 
information associated with problem reports to 
solve software problems. Discussed in detail 
are the definition of the problem, an overview 
of the problem solution, the design of PRESS, a 
description of the development methodology, and 
the technique used for gathering statistics that 
are used to evaluate PRESS. 

Authors : Rook, F. W. and Odubiyi, J. B. 

Title: An Expert System for Satellite Orbit Control 
(ESSOC) 

Date: October 2 2 - 2 4 ,  1 9 8 6  

Source: Expert Systems in Government Symposium, McLean, 
VA, p p .  2 2 1 - 2 2 7  

A-32 

9 0 6  



Synopsis: The authors discuss the design and development 
of an expert system to aid in the ground-based 
satellite control process. Each of the 
following are discussed in detail: the problem 
domain, design methodology, satellite 
environment, and the development environment. 
In addition, the functions performed by ESSOC 
are described as well as the operation of the 
expert system. The latter discusses the 
knowledge representation scheme, the inferencing 
cycle, and the user interface. 

Author: Schneidewind, N. F. 

Title: The State of Software Maintenance 

Date: 1987 

Journal: IEEE Transactions on Software Engineering, 
Vol. SE-13, NO. 3, pp.  303-310 

Synopsis: The author reviews the state of software 
maintenance. Aspects of maintenance discussed 
are "the maintenance problem", models for 
maintenance, methods to improve maintenance, 
maintenance information management, maintenance 
standards, and maintenance of existing code. 

Author: Simon, H. A. 

Title: Whether Software Engineering Needs to Be 
Artificially Intelligent 

Date: 1986 

JOUKna 1 : IEEE Transactions on Software Engineering, 
VOl. SE-12, NO. 7, p p .  726-732 

Synopsis: The author points out that artificial 
intelligence and software engineering have to 
work together to make artificial intelligence a 
success. 

Authors: Soloway, E., Bachant, J., and Jensen, K. 

Title: Assessing the Maintainability of XCON-in-RIME: 
Coping with the Problems of a VERY Large 
Rule-Base 

A-33 
906 



Date: July 13-17, 1987 

Source: Proceedings of the Sixth National Conference on 
AI, Seattle, WA, Vol. 2, pp. 824-829 

Synopsis: The article describes the problems encountered 
in maintaining XCON, an expert system with very 
large rule base, and proposes solutions to these 
problems. The authors are using XCON-in-RIME, a 
higher order language than XCON and a 
programming tool called SEAR that "provides 
on-line enforcement of coding guidelines." The 
guidelines correspond to structured programming 
practices. 

Authors : Stachowitz, R. A. and Combs J. B. 

Title: Validation of Expert Systems 

Date: January 6-9, 1987 

Source: Proceeding of the Hawaii International 
Conference on Systems Sciences, Kona, Hawaii 

Synopsis: A description of the Expert System Validation 
Associate (EVA) is provided by the authors. 
This tool is under development at the Lockheed 
Missiles and Space Company, Inc. The purpose'of 
EVA is to define and develop automated tools to 
validate the structural, logical, and semantic 
integrity of expert systems. 

Aut hots : Stachowitz, R. A., Chang, C. L., Stock, T. S., 
and Combs, J. B. 

Title: Building Validation Tools for Knowledge-Based 
Systems 

Source: Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, TX 

Synopsis: The authors describe the Expert Systems 
Validation Associate (EVA), a knowledge-based 
system that is designed to improve the 
validation process by finding mistakes and 
omissions in the knowledge base, by proposing 
knowledge base extensions and modifications, and 
by showing the impact of changes to the 
knowledge base. 

A-34 

906 



Authors: Steppel, S., Clark, T. L., Belford, P. c., 
Bumgarner, W. D., Federoff, A. M., Frankle, N. 
S., Torreele, J. A., and Zuccaro, J. A. 

Title: Digital System Development Methodology 

Date: 1985 

Synopsis: Digital System Development Methodology (DSDM@) 
defines the practices used by Computer Sciences 
Corporation to develop systems. It covers all 
aspects of system development, from management 
to systems integration and testing. 

Author : Subrahmanyam, P. A. 

Title: The "Software Engineering" of Expert Systems: 
Is Prolog Appropriate? 

Date: 1985 

Jour na 1 : IEEE Transactions on Software Engineering, 
Vol. S E - 1 1 ,  NO. 11, pp.  1391-1400 

Synopsis: The author examines the basic features of Prolog 
from different viewpoints t o  determine whether 
these features support expert system 
development. The author concludes that, while 
useful, Prolog needs to be modified and enhanced. 

Authors : Swigger, K., Burns, H., Loveland, H., and 
Jackson, T. 

Title: An Intelligent Tutoring System for Interpreting 
Ground Tracks 

Date: July 13-17, 1987 

Source: Proceedings of the Sixth National Conference on 
AI, Seattle, WA, Vol. 1, pp. 72-76 

Synopsis: The authors describe an intelligent tutoring 
system that helps students learn how ground 
tracks are related to the orbital elements of 
space craft. The program trains students to 
estimate orbital parameters from a ground 
track. The program allows the student to change 
parameters to determine the effect of the 
altered parameter on the ground track. 

A - 3 5  

906 



Author: Teitelman, W. 

Title: A Tour Through Cedar 

Date: 1985 

Journal: IEEE Transactions on Software Vol. SE-11, No. 3 ,  
pp. 2 8 5 - 3 0 2  

Synopsis: The author describes the Cedar programming 
environment that combines high-quality graphics, 
a sophisticated editor and document preparation 
facility, and a variety of tools for the 
programmer to use in the construction and 
debugging of programs in a single integrated 
environment . 

Au t hor s : van de Brug, A . ,  Bachant, J., and McDermott, J. 

Title: The Taming of R1 

Date: 1 9 8 6  

Jour na 1 : IEEE Expert, Vol. 1, No. 3 ,  pp. 3 3 - 3 9  

Synopsis: The authors discuss the difficulties of.adding 
knowledge to R1 (XCON) and the use of Rime to 
solve this problem. 

Authors: Walker, T. C .  Miller, R. K. 

Title: Expert Systems 1986 

Date: 1986 

Publisher: Madison, GA: SEA1 Technical Publications 

Synopsis: This volume is a gold mine of information about 
expert systems. It provides information on the 
technology of expert systems, tools for building 
expert systems, and summarizes industrial, 
commercial, professional, and military, 
aerospace, and transportation applications. 

Author: Waterman, D. A. 

Title: A Guide to Expert Systems 

A-36 

9 0 6  



Date: 1986 

Publisher: Reading, MA: Addison-Wesley 

Synopsis: The book is divided into six sections: 1. 
Introduction to Expert Systems, 2. Expert System 
Tools, 3. Building an Expert System, 4. 
Difficulties with Expert System Development, 5. 
Expert Systems in the Marketplace, and 6. Expert 
Systems and Tools. The book is well written and 
very understandable. It provides a good 
introduction to expert systems in that it 
provides lucid descriptions of expert systems as 
well as information about current tools and 
existing systems. 

Author: Wingert, W. B. 

Title: Verifying Shuttle Onboard Software Using Expert 
Sys t ems 

Date: August 1987 

Source: Space Operations Automation and Robotics (SOAR) 
'87 Workshop, Johnson Space Center, Houston, TX 

Synopsis: The author describes the prototype version of 
the Analysis Criteria Expert System (ACES) which 
verifies the shuttle onboard flight software. 
The types of testing are described as well as 
experiences learned during the implementation of 
the prototype. . Details of the verification are 
provided. 

Authors: Woolf, B. and Cunningham, P. 

Title: Building A Community for Intelligent Tutoring 
Sys t ems 

Date: July 13-17, 1987 

Source : Proceedings of the Sixth National Conference on 
AI, Seattle, WA, Vol. 1, pp. 82-87 

Synopsis: The authors discuss the need for multiple 
experts to work together to develop knowledge 

A-37 
906 



representation systems for intelligent tutors. 
They describe example methodologies for building 
tools for knowledge acquisition. This includes 
specific tasks and criteria that might be used 
to transfer expertise from several experts to an 
intelligent tutoring system. 

Author : Zack, Barry A. 

Title: Building Operational Expert Systems 

Date: October 1 9 8 7  

Source: Tutorial presented at IEEE Expert Systems in 
Government Conference, Washington, DC 

Synopsis: This tutorial describes the functions involved 
with building an expert system. .Subjects 
covered are knowledge engineering, development 
and delivery environments, the building, 
evaluation, and deployment of knowledge-based 
sys tems . 

Author: Zualkernan, I., Tsai, W. T., and Volovik, D. 

Title: Expert Systems and Software Engineering: Ready 
for Marriage? 

Date: 1 9 8 6  

Jour na 1 : IEEE Expert, Vol. 1, No. 4 ,  pp. 2 4 - 3 1  

Synopsis: The authors discuss the waterfall model of 
software development and then discuss how expert 
systems can be applied to the different phases. 
They provide a case study in software testing. 

A-38 

9 0 6  



APPENDIX B - REFERENCE EVALUATION 

This' appendix provides the evaluation of the characteristics of 
each reference read for this study. A weighted code, from 1 to 5 
(with 5 representing the highest value), was assigned to each 
reference based on its relevance to the study. No entry is made 
in the table for those references that could not be placed easily 
into any of the classification criteria. The characteristics are 
planning (PLN), organizing (ORG), monitoring (MON), and 
controlling (CTR) in the management area and quality assurance 
(QA), configuration control (CC), scheduling (SCH), and 
development life cycle (DC) in the technical area, 

MANAGEMENT TECHNICAL 
ID TITLE PLN ORG MON CTR QA CC SCH DC 

- - -  --- .- - - - - - - -  - - -  -- -- -- - - - -  -- -. .- - - - . -  - - -  -- --- 
1 A Guide to Expert Systems 3 

2 Manilying an Expert System 
Project 

3 Constructing an Expert 
System 

4 Expert Systems 

5 Expert System Technology: 
Development and 
Appl ical: ion 

6 Impact Assessment: 
Perspective of an Operator 
Assistant for Scheduling 
NASA's TDRSS 

7 Expert System: A Network 
Operator Assistant (NOA) 

8 Knowledge-based 
Progrdmming: A Survey of 
Program Design & 
Construct ion Techniques 

5 

4 

3 

B-1 

9 0 6  



ID 
- - .  - -  

9 

10 

11 

12 

13 

14 e 
15 

16 

17 

18 

19 

20 

21 

TITLE 
MANAGEMENT TECHNICAL 

PLN ORG MON CTR QA CC SCH DC 

Mainl.dining an Expert 
System for the 
HST Ground Support 

Architectures for 
Knowledge-Based Systems 

Towards a Science of 
Expert Systems 

XCON: An Expert 
Configuration System at 
Digital Equipment 
Corporation 

The Low Road, the Middle 
Road, and the High Road 

Evaluation of Expert 
Systems: Issues and Case 
Studies 

Whether Software 
Engineering Needs to Be 
Arrificially Intelligent 

Interview: Peter Hart 
T a l k s  about Expert Systems 

The Knowledge-Based Expert 
System: A Tutorial 

Introduction to Expert 
Systems 

Rapid Acquisition and 
Combination of Knowledge 
from Multiple Experts in 
the Same Domain 

The State of Software 
Maintenance 

Maintaining Configurations 
of Evolving Software 
Systems 

5 

2 

4 

3 

5 

2 

3 

B-2 
906 



ID TITLE 
MANAGEMENT TECHN I CAL 

PLN ORG MON CTR QA CC SCH DC 

22 A 15 Year Perspective on 
Automatic Programming 

23 An Intelligent Tutoring 
System for Interpreting 
Ground Tracks 

24 Building A Community for 
Intelligent Tutoring 
Systems 

25 Inferring Formal Software 
Specifications From 
Episodic Descriptions 

Guide Planning 
26 Using Goal Interactions to 

27 Localized Representation 
and Planning Methods for 
Parallel Domains 

28 Rules for the Implicit 
Acquisition of Knowledge 
about the User 

29 Expert Systems 1986 

30 AQUA: Asking Questions 
and Understanding Answers 

31 The "Software Engineering" 
of Expert Systems: Is Prolog 
Appropriate? 

32 If Prolog Is The Answer, 
What is the Question? or 
What it Takes to Support 
the AI Programming 
Par ad igms 

33 The Role of Frame-Based 
Representation in 
Reasoning 

3 

3 2 

5 

3 

4 

4 

4 

34 Logic Programming 

B-3 
906 



3 5  Expert Systems: 
Applications 

36 

3 7  

3 8  

3 9  

4 0  

4 2  

4 3  

4 4  

4 5  

4 6  

4 7  

4 0  

0 

A Software Engineering 
Approach to Expert 
System Design and 
Verification 

Steps to a New Methodology 

untitled 

Impact Assessment: A Case 
Study for Scheduling 
NASA's TDRSS Resources 

Expert Systems: Perils and 
Promise 

Assessing the 
Maintainability of 
XCON-in-RIME: Coping with 
the Problems of a Very 
Large Rule-Base 

Rule-Based Systems 

Software Engineering in a 
Development Group 

Developing a Software 
Engineering Methodology 
for Knowledged-Based 
Systems 

MO&DSD Systems Management 
Policy 

MOSDSD Software Development 
Policy 

Digital System Development 
Methodology 

A Tour Through Cedar 

MANAGEMENT TECHNICAL 
PLN ORG MON CTR QA CC SCH DC 

3 

4 

5 

5 

4 

5 

3 

4 

906 
B-4 



MANAGEMENT TECHN I CAL 
PLN ORG MON CTR QA CC SCH DC ID 

----- 
TITLE 

Expert Systems and 
Software Engineering: 
Ready for Marriage? 

5 49 

50 Intelligent Support for 
Software Specification and 
Design 

5 

51 OPGEN Revisited: Some 
Methodological 
Observations on the 
Delivery of ES 

4 

5 2  Expert Systems Built by 
the "Expert": An 
Evaluation of OPS5 

Engineering Artificial 
Intelligence Software 

53 

5 4  AI'S Contribution to 
Software Development or 
Expert Systems are 
Symptoms 

55 PLAN-IT: Scheduling 
Assistant for Solar System 
Exploration 

- 4  

5 5 

4 

An Expert System That 
Performs A Satellite 
Stationkeeping Maneuver 

56 

5 7  The Load Shedding Advisor: 
An Example of a 
Crisis-Response Expert 
System 

Automation of Spacecraft 
Control Centers 

58 

59 Expert Systems and 
Accident Management 

6 0  Ada and Knowledge-Base 
Systems: A Prototype 
Combining the Best of 
Both Worlds 

B-5 
906 



ID 
- ---- 

61 

62 

63 

64 

6 5  

66 

67 

68 

69 

70 

71 

72 

73 

An Expert System for 
Satellite Orbit Control 
(ESSOC) 

An Expert System for 
Reducing Software 
Maintenance Costs 

An In-Service Expert 
System for Configuring 
Thrusters on Orbiting 
Spacecraft 

An Intelligent Aid to 
Assist Knowledge Engineers 
with Interviewing Experts 

Choosing Knowledge 
Acquisition Strategies for 
Application Tasks 

Verification and 
Validation of Expert 
Systems 

A Structured Approach to 
Expert System Design 

The Prototyping 
Methodology: Designing 
Right the First Time 

Stop the Life-Cycle, I 
Want to Get Off 

Software Technology in the 
1990's: Using a New 
Paradigm 

Evolutionary Delivery 
versus the "Waterfall 
Model" 

Expert Systems in Space 

The Taming of R1 3 

5 

5 

5 

B-6 
906 



74 AI and Software 
Engineering 

75 Software Engineering: 
Problems and Perspectives 

76 Knowledge Acquisition 
and Rapid Prototyping 
of an Expert System: 
Dealing with "Real 
World" Problems 

77 The Conventional 
Software Life-cycle 
Model: Its Evolution 
and Assumptions 

78 Defense Science Board 
Final Report on the 
Software Task Force 

79 Defense System Software 
Development 

80 Rapid- Prototyping 

81 Structured Analysis and 
System Specification 

82 Choosing Architectures for 
Expert Systems 

83 Software Engineering 
Economics 

84 Building Operational 
Expert Systems 

85 The Management of Expert 
System Development 

86 No Silver Bullets: Essence 
and Accidents of Software 
Engineering 

MANAGEMENT TECHNICAL 
PLN ORG MON CTR QA CC SCH DC 

3 3  

4 

3 

4 

4 

3 

3 3 3 3  

5 

4 

4 

4 4 4 4  4 4 4 4  

4 4  4 

5 5 4 5  5 5  

3 

906 
B-7 



87 Development of a 
Comprehensive Software 
Engineering Environment 

88 Simplifying the 
Construction of 
Domain-Specific Automatic 
Programming Systems: The 
NASA Automated Software 
Development Workstation 
Project 

89 Verifying Shuttle Onboard 
Software Using Expert 
Systems 

90 Building Validation Tools 
for Knowledge-Based 
Systems 

91 Expert System Verification 
Concerns in an Operations 
Environment 

92 MPAD MCC Workstation 
System: ADDAM and EEVE 

93 Approaches to the 
Verification of Rule-Based 
Expert Systems 

94 A Formal Approach to 
Validation and 
Verification of 
Knowledge-Based 
Control Systems 

95 An Expert System 
Development Methodology 
which Supports 
Verification and 
Validation 

96 A Practical Cost-Conscious 
Expert System Development 
Methodology 

MANAGEMENT TECHNICAL 
PLN ORG MON CTR QA CC SCH DC 
--- --- --- --- --- --- --- - - -  

4 

3 

5 

5 

4 

5 

4 

B-8 
906 



ID 
----- 

97 

98 

99 

100 

101 

102 

103 

Validation of Expert 
Systems 

Validating Expert System 
P-erformance 

Surprise Control 

Problem Features That 
Influence the Design of 
Expert Systems 

Knowledge Acquisition in 
the Development of a Large 
Expert System 

Knowledge Base 
Verification 

Knowledge Based System 
Verification and 
Validation as Related to 
Automation of Space Station 
Subsystems: Rationale for a 
Knowledge Based System 
Life cycle 

MANAGEMENT TECHNICAL 
PLN ORG MON CTR QA CC SCH DC 

2 

5 

3 

4 

5 

2 

5 

B-9 
906  



APPENDIX C - LIST OF INTERVIEWEES 

L. Botten 

J. Buser 

J. Bush 

- Computer Sciences Corporation 
Systems Sciences Division 
8728 Colesville Road 
Silver Spring, MD 20910 

- 508B Country Club Parkway 
Mt. Laurel, NJ 08054 

- Computer Sciences Corporation 
Systems Sciences Division 
4600 Powder Mill Road 
Beltsville, MD 20705 

A. Critchfield - Computer Sciences Corporation 
Systems Sciences Division 
4600 Powder Mill Road 
Beltsville, MD 20705 

B. Das - Computer Sciences Corporation 
Systems Sciences Division 
8728 Colesville Road 
Silver Spring, MD 20910 

T. Davis - NASA Kennedy Space Center 
Cape Canaveral, FL 32899 

L. Gilstrap - Computer Sciences Corporation 
Systems Sciences Division 
8728 Colesville Road 
Silver Spring, MD 20910 

R. Jackson - Space Telescope Science Institute 
3700 San Martin Drive 
Baltimore, MD 21218 

C. Knoblock - Carnegie Mellon University 
Department of Computer Science 
5000 Forbes Ave 
Pittsburgh, PA 15213 

K. Lindenmayer - Space Telescope Science Institute 
3700 San Martin Drive 
Baltimore, MD 21218 

E. Medeiros - Space Telescope Science Institute 
3700 San Martin Drive 
Baltimore, MD 21218 

c-1 
906 



a 

G .  Miller - Space Telescope Science Institute 
3700 San Martin Drive 
Baltimore, MD 21218 

K. Richardson - Systems Autonomy Demonstration 
Project 
Off ice 
NASA/Ames Research Center 
Moffet Field. CA 94035 

A. Weiss - The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102 

B. Woodard - Computer Sciences Corporation 
Systems Division 
3160 Fairview Park Drive 
Falls Church, VA 22042 

In addition, the task members talked briefly with Harry Lum 
at NASA/Ames, R, Brown at Johnson Space Center, Nancy Martin 
of SoftPert Systems, and Ann Baker of CSC at Johnson Space 
Center. 

c-2 
906 



APPENDIX D - CORE INTERVIEW QUESTIONS 

The following represents the core set of questions used as a 
base for the interviews, Depending on the nature of the 
responses in a given interview, some questions will have 
been omitted and others delved into more deeply. 

I. PERSONAL- 

Title 

Company 

Type of work company is generally involved in 

Current responsibility (e-g., management/technical) 

Experience in software development 

Experience in expert system development 

1 I - TECHNICAL 

If interviewee is not currently working on an expert system 
project, direct questions to the project with which 
interviewee is most familiar, 

A. PROJECT INFORMATION 

Describe project in terms of 

Purpose 
Current status (e-g., what phase of development) 
Size (staff and system) 
Type (e.g,. a research expert system or an 
operationa1.expert system: deep knowledge as opposed 
to a quick problem solver) 

B. METHODOLOGY 

Does your company have an established methodology for 
developing software? Describe briefly (waterfall method? 
21671) - 
Did you follow this methodology on your expert system task? 
l f  not, what took its place? 

D- 1 
906 



What tools, if any, have you used? 

Why did you choose it? 
Did you like it? Was it satisfactory? How could it  
be improved? 

How was (do you plan to) knowledge acquire(d)? 

How long did it take? 
Did you talk to an expert? 
How often did the knowledge engineer/expert meet? 
Was the expert part of the project team? 

Did you use (rapid) prototyping? 

Alone or in combination with some other approach? 
When did you stop using it? 

How did you evaluate (test) the expert system? 

What QA/CM activities normally occur in software development 
development in your company's methodology? 

Software development notebooks 
Inspections 
Checklists 
Baselines 
Configuration coritrol 
Status accounting 

Were any of these applied to expert system development? 

If so, which ones? 
Did they differ from the.regular QA/CM methods? If 
so, how? 

How did you document the expert system, especially during 
prototyping? 

C. SCHEDU1,E 

How long has project been in existence? 

How much more to go? 

Who developed the schedule (management or technical O K  both)? 

Did you use a scheduling tool? If so, which one? 

Any problems meeting schedule, i-e., is schedule 
realistic? 

D-2 
906 



D. MANAGEMENT APPROACH 

What mechanisms were used to 

Perform the task planning 
Determine budget (staffing, not dollars) 
Monitor and control the task (e-g., reviews and 

Report status 
Quantify work 

demonstrations; milestones?) 

E. PROBLEMS 

What problems did you encounter? 

Performance? 
Communication (expert/knowledge engineer, task 
members, technical staff/management)? 
User satisfaction? 
Maintenance? 
Schedule/budget? 
Tools/development environment choice? 
Other? 

If none, what did you do that worked so well?. 

D- 3 
906 



- GLOSSARY -- 

AI 
csc 
DEC 
DSDM 
ESCIE 
GSFC 
TEEE 
KBS 
MO&DSI) 
NASA 
PMS 
PRESS 
SSD 
ST Scl 

a r t j. f i c ia 1 i. n t e 1 1 ige nce 
Computer sciences corporation 
Digital Equipment Corporation 
Digital System Development Methodolgy 
Expert System Controlled Iterative Enhancement 
Goddard Space Flight Center 
Institute of Electronic and Electrical Engineers 
knowledge-based system 
Mission Operations and Data Systems Directorate 
National Aeronautics and Space Administrat ion 
Platform Management System 
PMS Resource Envelope Scheduling System 
System Sciences Division 
Space Telescope Science Institute 

GL- 1 

9 0 6  



REFERENCES 

1. 
I 

2. 

3 .  

4. 

5. 

6. 

7. 

8 ,  

9. 

10 - 

11. 

D. A. Waterman, A Guide to Expert Systems, Reading, 
Mass.: Addison-Wesley, 1986 

L. G, Hull, "Managing an Expert System Project" (paper 
presented at the Goddard Space Flight Center 1986) 

B. Buchanan, D- Barstow, R. Bechtel, J. Bennett, W. 
Coancey, C. Kulikowski, T. Mitchell, and D. A. 
Waterman, "Constructing an Expert System", Buildinq 
Expert Systems, F. Hayes-Roth, D. A. Waterman, and D. 
B. Lenat, eds. Reading, Mass.: Addison-Wesley, pp. 
127-167, 1983 

B. Hancock, "Expert Systems," DEC Professional, vol. 6, 
no. 5, pp-  40-48, 1987 

R. Keller, Expert System Technoloqy: Development and 
Application, Englewood Cliffs, N.J.: Yourdon Press, 1987 

B. K. Das and R. A. Berg, "Impact Assessment: 
Perspective of an Operator Assistant for Scheduling 
NASA's Tracking and Data. Relay Satellite System" 
(poster session at 'the Third IEEE Conference on ' 

Artificial Intelligence Applications, Orlando, FL, 
February 1987), pp-  23-27 

B. K- Das and R. A. Berg, "Expert System: A Network 
Operator Assistant (NOA)" (CSC presentation 1987) 

A. T. Goldberg, "Knowledge-based Programming: A Survey 
of Program Design and Construction Techniques," IEEE 
Transactions on Software Enqineerinq, vol. SE-12, no. 
7, pp-  752-7669 1986 

K. Lindenmayer, S. Vick, and D. Rosenthal, "Maintaining 
an Expert System for the Hubble Space Telescope Ground 
Support," Proceedinqs of the Goddard Conference on 
Space Applications of AI and Robotics, 1987 

P. Friedland, "Architectures for Knowledge-Based 
Systems," Communications of the ACM, vol. 28, no. 9, p .  
903, 1985 

P. J. Denning, "Towards a Science of Expert Systems," 
IEEE Expert, vol. 1, no- 2, pp.  80-83, 1986 

R - 1  
906 



12. 

13, 

14, 

15. 

16. 

17. 

. 18. 

19, 

20 - 

21, 

22. 

A, Kraft, "XCON: An Expert Configuration System at 
Digital Equipment Corporation," The AI Business, P-H. 
Winston and K, A. Prendergast, eds. London, England: 
MIT Press, pp-  41-49, 1984 

J. S .  Brown, "The Low Road, the Middle Road, and the 
High Road," The AI Business, P.H. Winston and K. A. 
Prendergast, eds, London, England: MIT Press, pp. 
81-90, 1984 

J. Gaschnig, P, Klahr, H, Pople, E- Shortliffe, and A. 
Terry, "Evaluation of Expert Systems: Issues and Case 
Studies," Buildinq Expert Systems, F. Hayes-Roth, D. 
A, Waterman, and D- B. Lenat, eds, Reading, Mass.: 
Addison-Wesley, pp.  241-280, 1983 

H. A. Simon, "Whether Software Engineering Needs to Be 
Artificially Intelligent," IEEE Transactions on 
Software Enqineerinq, vol SE-12, no. 7, pp-  726-732, 
1986 

"Interview: Peter Hart Talks about Expert Systems," 
IEEE Expert, vol. 1, no- 1, pp. 96-99, 1986 

F, Hayes-Roth, "The Knowledge-Based Expert System: A 
Tutorial," Computer, vol. 17, no. 9, pp.  11-28, 1984 

W, Myers, "Introduction to Expert Systems," IEEE 
Expert, vol, 1, no- 2, pp.  100-109, 1986 

J. H, Boose, "Rapid Acquisition and Combination of 
Knowledge from Multiple Experts in the Same Domain," 
Second Conference on Artificial Intelliaence 
Applications, Miami Beach, December 11-13, 1984, pp.  
461-466 

N. F. Schneidewind, "The State of Software 
Maintenance," IEEE Transactions on Software 
Enqineerinq, vol; SE-13, no. 3, pp-  303-310, 1987 

K. Narayanaswamy and W, Scacchi, "Maintaining 
Configurations of Evolving Software Systems," IEEE 
Transactions on Software Enqineerinq, vol, SE-13, no. 
3, pp.  324-334, 1987 

R, Balzer, "A 15 Year Perspective on Automatic 
Programming," IEEE Transactions on Software 
Enqineerinq, vol. 92-11, no. 11, pp.  1257-1268, 1985 

R-2 
906 



23. K, Swigger, H- Burns, H, Loveland, T, Jackson, "An 
Intelligent Tutoring System for Interpreting Ground 
Tracks," Proceedinqs of the Sixth National Conference 
on AI, Seattle, WA, July 13-17, 1987, vol. 1, pp- 72-76 

24. B. Woolf and P. Cunningham, "Building A Community for 
Intelligent Tutoring Systems ," Proceedinqs of the 
Sixth National Conference on AI, Seattle, WA, July 
13-17, 1987, V O ~ .  1, pp-  82-87 

25. V, E. Kelly and U. Nonnenmann, "Inferring Formal 
Software Specifications From Episodic Descriptions," 
Proceedings of the Sixth National Conference on AI, 
Seattle, WA, July 13-17, 1987, vol, 1, pp.  127-132 

26. C. Hayes, "Using Goal Interactions to Guide Planning", 
Proceedings of the Sixth National Conference on AI, 
Seattle, WA, July 13-17, 1987, vol, 1, pp. 224-228 

27. A, L, Lansky and D, S, Fogelsong, "Localized 
Representation and Planning Methods for Parallel 
Domains,"Proceedinqs of the Sixth National Conference 
on AI, Seattle, WA, July, 13-17, 1987, vol. 1, 
pp-  240-245 

28. R -  Kass and T, Finin, "Rules for the Implicit 
Acquisition of Knowledge about the User," Proceedinqs 
of the Sixth National Conference on AI, Seattle, WA, 
July 13-17, 1987, VOl- 1, pp.  295-300 

29. T. C, Walker and R, K. Miller, Expert Systems 1986, 
Madison, GA: SEA1 Technical Publications, 1986 

30. A. Ram, "AQUA: Asking Questions and Understanding 
Answers," Proceedinqs of the Sixth National Conference 
on AI, Seattle, WA, July 13-17, 1987, vol. 1, 
pp.  312-316 

31, P, A. Subrahmanyam, "The 'Software Engineering' of 
Expert Systems: Is Prolog Appropriate?," IEEE 
Transactions on Software Enqineerinq, vol. SE-11, no. 
11, pp.  1391-1400, 1985 

32. D. G. Bobrow, "If Prolog Is The Answer, What is the 
Question? or What It Takes to Support the AI 
Programming Paradigms," IEEE Transactions on Software 
Enqineerinq, vol, SE-11, no, 11, p .  1401, 1985 

33. R, Fikes and T. Kehler, "The Role of Frame-Based 
Representation in Reasoning," Communications of the 
m, vol. 28, no. 9, pp-  904-920, 1985 

R-3 
906 



34, M -  R. Genesereth and M. L. Ginsberg, "Logic 
Programming," Communications of the ACM, vol, 28, no. 
9, pp.  933-941, 1985 

35, J, F, Brule, "Expert Systems: Applications," Artificial 
Intelliqence: Theory, Logic and Application, Blue Ridge 
Summit, PA: Tab Books, Inc., 1986 

36. D, C, Bochsler and M. A. Goodwin, "A Software 
Engineering Approach to Expert System Design and 
Verification," Conference on Artificial Intelliqence 
for Space Applications, Huntsville, AL, November 13-14, 
1986, p,  47 

37, E, Medeiros, Steps to a New Methodoloqy (unpublished) 

38. An untitled presentation by personnel from Inference 

39. B .  K, Das and R, A, Berg, "Impact Assessment: A Case 
Study for Scheduling NASA's TDRSS Resources," 
Proceedinqs of Third Annual Expert Systems in 
Government Conference, Washington, DC, October 19-23, 
1987, pp.  254-259 

40. .D, G, Bobrow, S .  Mittal, M. J. Stefik, "Expert Systems: 
Perils and Promise," Communications of the ACM, 
vol, 29, no. 9, pp.  880-894, 1986 

41. E. Soloway, J. Bachant, and K. Jensen, "Assessing the 
Maintainability of XCON-in-RIME: Coping with the 
Problems of a VERY Large Rule-Base," Proceedings of the 
Sixth National Conference on AI, Seattle, WA, July 
13-17, 1987, VOl, 1, pp.  824-829 

4 2 .  F. Hayes-Roth, "Rule-Based Systems," Communications of 
the ACM, vol. 28, no, 9, pp. 921-932, 1985 

43. G. Ringland, "Software Engineering in a Development 
' G r o u p , "  Software-Practice and Experience, vol. 14, 
no, 6, pp.  533-559, 1984 

44. R -  J, K, Jacob and J. N. Froscher, Developinq a 
Software Enqineerinq Methodoloqy for Knowledqe-Based 
Systems, Naval Research Laboratory Report 9019, 1986 

45. Mission Operations and Data Systems Directorate Systems 
Manaqement Policy, NASA, Goddard Space Flight Center, 
MDOD-EYMP/0485, 1986 

R-4 
906 



46. 

47 

48. 

49. 

50 - 

51. 

52. 

53. 

54. 

55. 

56. 

Mission Operations and Data Systems Directorate 
Software Development Policy, NASA, Goddard Space Flight 
Center, MODSD-BYDP/0186, 1986 

S. Steppel, T. L. Clark, P. C. Belford, W. D. 
Bumgarner, A -  M. Federoff, N. S. Frankle, J.A. 
Torreele, and J.  A. Zaccaro, Digital System Development 
Methodoloqy ( DSDM), Computer Sciences Corporation, 1985 

W. Teitelman, "A Tour Through Cedar," IEEE Transactions 
on Software Enqineerinq, vol. SE-11, no. 3, pp.  
285-302, 1985 

I. Zualkernan, W. T. Tsai, and D. Volovik, "Expert 
Systems and Software Engineering: Ready for Marriage?," 
IEEE Expert, vol. 1, no. 4, p p -  24-31, 1986 

M. D, Lubars and M. T. Harandi, "Intelligent Support 
for Software S.pecification and Design," IEEE Expert, 
vol. 1, no. 4, pp-  33-41, 1986 

R. P, Frail and R, S ,  Freedman, "OPGEN Revisited: Some 
Methodological Observations on the Delivery of Expert 
Systems," Expert Systems in Government Symposium, 
McLean, VA, October 22-24, 1986 

R, Jackson, "Expert Systems Built by the 'Expert': An 
Evaluation of OPS5," Proceedinqs of the Goddard 
Conference on Space Applications of AI and Robotics, 
1987 

D. Partridge, "Engineering Artificial Intelligence 
Software," Artificial Intelliqence Review, vol. 1, pp.  
27-41, 1986 

J. M. Fox, "AI'S Contribution to Software Development 
or Expert Systems Are Symptoms," Expert Systems in 
Government Symposium, McLean, VA, October 22-24, 1986 

W. C. Dias, J .  A. Henricks, and J. C. Wong, "PLAN-IT: 
Scheduling Assistant for Solar System Exploration," 
Proceedings of the Goddard Conference on Space 
Applications of AI and Robotics, 1987 

K. M. Lines-Browning and J. L, Stone, "An Expert System 
That Performs A Satellite Stationkeeping Maneuver," 
Proceedinqs of the Goddard Conference on Space 
Applications of AI and Robotics, 1987 

R-5 
906 



57. T. Bollinger, E. Lightner, J. Laverty, and E. Ambrose, 
"The Load Shedding Advisor: An Example of a 
Crisis-Response Expert System," Proceedinqs of the 
Goddard Conference on Space Applications of AI and 
Robotics, 1987 

58. R. Dutilly, "Automation of Spacecraft Control Centers," 
Proceedinqs of the Goddard Conference on Space 
Applications of AI and Robotics, 1987 

59. J. P. Jenkins and W. R. Nelson, "Expert Systems and 
Accident Management," Expert Systems in Government 
Symposium, McLean, VA, October 22-24, 1986, pp. 88-95 

60. D. Brauer, P. Roach, M. Frank, and R. Knackstedt, "Ada 
and Knowledge Base Systems: A Prototype Combining the 
Best of Both Worlds," Expert Systems in Government 
Symposium, McLean, VA, October 22-24, 1986, pp.198-202 

61. F. W. Rook and J. B. Odubiyi, "An Expert System for 
Satellite Orbit Control (ESSOC)," Expert Systems in 
Government Symposium, McLean, VA, October 22-24, 1986, 
pp-  221-233 

62. D. W. Rolston, "An Expert System for  Reducing Software 
Maintenance Costs," Expert Systems in Government 
Symposium, McLean, Va, October 22-24, 1986, pp.  396-406 

63. J. A. Robinson and A. A. Satterlee, "An In-Service 
Expert System for  Configuring Thrusters on Orbiting 
Spacecraft," Proceedinqs of the Western Conference on 
Expert Systems, Anaheim, CA, June 2-4, 1987, pp.  112-117 

Engineers with Interviewing Experts," Proceedinqs of 
the Western Conference on Expert Systems, Anaheim, CA, 
June 2-4, 1987, pp.  31-36 

6 4 .  R. M. O'Bannon, "An Intelligent Aid to Assist Knowledge 

65. C .  M. Kitto and J. H. Boose, "Choosing Knowledge 
Acquisition Strategies f o r  Application T a s k s , "  
Proceedinqs of the Western Conference on Expert 
Systems, Anaheim, CA, June 2-4, 1987, pp.  96-103 

6 6 .  C. J. R. Green and M. M. Keyes, "Verification and 
Validation of Expert Systems," Proceedinqs of the 
Western Conference on Expert Systems, Anaheim, CA, June 
2-4, 1987, p p .  38-43 

67. M. Ebrahimi, "A Structured Approach to Expert System 
Design," Proceedinqs of the Western Conference on 
Expert Systems, Anaheim, CA, June 2 - 4 ,  1987, pp.  18-24 

R-6 
906 



68- 

69. 

70. 

71. 

72. 

73. 

74 , 

75. 

76. 

77 

78 I 

79. 

8 0 .  

81. 

K, Lantz, "The Prototyping Methodology: Designing Right 
the First Time," Computerworld, pp.  69-72, April 7, 1986 

G. R, Gladden, "Stop the Life-Cycle, I Want to Get 
Off," ACM SIGSOFT Software Enqineerinq Notes, vol. 7, 
no- 2, pp.  35-39, 1982 

R. Balzer, T. E. Cheatham, and C- Green, "Software 
Technology in the 1990's: Using a New Paradigm," IEEE 
Computer, vol. 16, no- 11, pp. 39-45, 1983 

T- Gilb, "Evolutionary Delivery versus the "Waterfall 
Model"," ACM SIGSOFT Software Enqineerinq Notes, 
vol, 10, no. 3, pp-  49-61, 1985 

D, Leinweber, "Expert Systems in Space," IEEE Expert, 
v01.2, no. 1, pp.  26-36, 1987 

A- van de Brug, J. Bachant, and J. McDermott, "The 
Taming of Rl," IEEE Expert, vol- 1, no- 3, pp.  33-39, 
1986 

R, Kowalski, "AI and Software Engineering," Datamation, 
vol, 30, no. 18, pp. 92-102, 1984 

C. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda, 
"Software Engineering: Problems and Perspectives," 
Computer, vol. 17, no. 10, pp. 191-209, 1984 

P. A. Bailey, and B. B. Doehr, "Knowledge Acquisition 
and Rapid Prototyping of an Expert System: Dealing with 
'Real World' Problems," Conference on Artificial 
Intelliqence for Space Applications, Huntsville, AL, 
November 13-14, 1986 

W -  W. Agresti, "The Conventional Software Life-cycle 
Model: Its Evolution and Assumptions," New Paradiqm for 
Software Development, IEEE Computer Society Press, 
Washington, D. C,, 1986 

"Defense Science Board Final Report on the Software 
Task Force," 1987 

Defense System Software Development, DOD-STD-2167, 
Department of Defense, 1985 

J. Connell, Software Rapid Prototyping seminar, August 
27-28, 1987, Washington, DC 

T. DeMarco, Structured Analysis and System 
'Specification, Yourdon, Inc., New York 1979 

R-7 
906 



* 

82. 

83. 

84, 

85- 

86. 

87 - 

88- 

8 9 -  

90- 

91. 

P. J. Kline and S, B. Dolins, "Choosing Architectures 
for Expert Systems," US Department of Commerce, NTIS, 
Springfield, VA, 1985 

B. W -  Boehm, Software Engineerinq Economics, 
Prentice-Hall, Inc., Englewood Cliff, N J ,  1981 

B, A. Zack, "Building Operational Expert Systems," 
Tutorial presented at Third Annual Expert Systems in 
Government Conference, Washington, DC, October, 1987 

N, Martin, "The Management of Expert System 
Development," Tutorial presented at Third Annual Expert 
Systems in Government Conference, Washington, DC, 
October, 1987 

F, P- Brooks Jr., "No Silver Bullets: Essence and 
Accidents of Software Engineering," Computer, vol, 20, 
no. 4, pp- 10-19, 1987 

T.C. Hartrum and G. B. Lamont, "Development of a 
Comprehensive Software Engineering Environment," 
presented at Space Operations and Robotics '87 
Workshop, Johnson Space Center, Houston, TX, 

B. P. Allen and P, L- Holtzman, "Simplifying the 
Construction of Domain-Specific Automatic Programming 
Systems: The NASA Automated Software Development 
Workstation Project," presented at the Space Operations 
Automation and Robotics (SOAR) '87 Workshop, Johnson 
Space Center, Houston, TX, August, 1987 

W, B. Wingert, "Verifying Shuttle Onboard Software 
Using Expert Systems," presented at the Space 
Operations Automation and Robotics (SOAR) '87 Workshop, 
Johnson Space Center, Houston, TX, August, 1987 

August, 1.987 * 

R. A. Stachowitz, C. L, Chang, T, S, Stock, and J. B. 
Combs, "Building Validation Tools for Knowledge-Based 
Systems," presented at the Space Operations Automation 
and Robotics (SOAR) '87 Workshop, Johnson Space Center, 
Houston, TX, August, 1987 

M. A, Goodwin and C. C. Robertson, "Expert System 
Verification Concerns in an Operations Environment," 
presented at the Space Operations Automation and 
Robotics (SOAR) '87 Workshop, Johnson Space Center, 
Houston, TX, August, 1987 

R-8 
9 0 6  



92. 

93- 

9 4  , 

95. 

96. 

97 

98. 

99. 

100. 

101 

B. Kozick Jr. and W, Reynolds, "MPAD MCC Workstation 
System: ADDAM and EEVE," presented at the Space 
Operations Automation and Robotics (SOAR) '87 
Workshop, Johnson Space Center, Houston, TX, August, 
1987 

C. Culbert, G, Riley, and R, T. Savely, "Approaches to 
the Verification of Rule-Based Expert Systems," 
presented at the Space Operations Automation and 
Robotics (SOAR) '87 Workshop, Johnson Space Center, 
Houston, TX, August, 1987 

G, Castore, "A Formal Approach to Validation and 
Verification of Knowledge-Based Control Systems," 
presented at the Space Operations Automation and 
Robotics (SOAR) '87 Workshop, Johnson Space Center, 
Houston, TX, August, 1987 

C, Culbert, G. Riley, and R. T. Savely, "An Expert 
System Development Methodology which Supports 
Verification and Validation," Submitted to 4th IEEE 
Conference on Artificial Intelligence, 1987 

R. L. Citrenbaum and J. R, Geissman, "A Practical 
Cost-Conscious Expert System Development Methodology," 
presented at AI-86: Artificial Intelligence and 
Advance Computer Technology Conference, Long Beach, 
CA, April 29 - May 1, 1986 

R, A. Stachowitz and J, B. Combs, "Validation of 
Expert Systems," Proceedinqs of the Hawaii 
International Conference on Systems Sciences, Kona, 
Hawaii, 1987 

R. M. O'Keefe, 0. Balci, and E. P. Smith, "Validating 
Expert System Performance," IEEE Expert, vol. 2, 
no. 4, pp.  61-90, 1987 

M. Patrick, "Surprise Control," Computerworld, 
vol. 21, pp. 93-98, November 16, 1987 

P. J. Kline and S. B. Dolins, "Problem Features That 
Influence the Design of Expert Systems," AAAI 86: 
Fifth National Conference on Artificial Intelligence, 
p p -  956-962, 1986 

D. S. Prerau, "Knowledge Acquisition in the 
Development of a Large Expert System," AI Maqazine, 
vol. 8 ,  no. 2, pp.  43-51, 1987 

R-9 
906 



102. T, A, Nguyen, W. A. Perkins, T, J. Laffey, and D. 
Pecora, "Knowledge Base Verification," AI Maqazine, 
vol. 8, no. 2, pp.  69-75, 1987 

103. K, Richardson and C. Wong, "Knowledge Based System 
Verification and Validation as Related to Automation 
of Space Station Subsystems: Rationale for a Knowledge 
Based System Lifecycle," presented at Third Conference 
on Artificial Intelligence for Space Applications, 
Huntsville, AL, November 2-3, 1987 

104, Proceedings of the Third Conference on Artificial 
Intelliqence for Space Applications, NASA Conference 
Publication 2492, Huntsville, AL, November 2-3, 1987 

R-10 

~ 


